Suppose \(Ax = \lambda x\) with \(x \ne 0\). Let \({\bf{\alpha }}\) be a scalar different from the eigenvalues of \(A\), and let \(B\) and let \(B = {\left( {A - \alpha I} \right)^{{\bf{ - 1}}}}\) . Subtract \(\alpha x\) from both sides of the equation \(A{\rm{x}} = \lambda {\rm{x}}\), and use algebra to show that \(\frac{1}{{\lambda - \alpha }}\) is an eigenvalue of \(B\), with \({\rm{x}}\) a corresponding eigenvector.

Short Answer

Expert verified

It is proved that \(\frac{1}{{\lambda - \alpha }}\) is an eigenvalue of the matrix \(B = {\left( {A - \alpha I} \right)^{ - 1}}\) with \({\rm{x}}\) a corresponding eigenvector.

Step by step solution

01

Write the definition eigenvector and eigenvalue

Eigenvector and Eigenvalue:An eigenvector of \(n \times n\) matrix \(A\) is a nonzero vector \({\bf{x}}\) such that \(A{\bf{x}} = \lambda {\bf{x}}\) for some scalar \(\lambda \) where scalar \(\lambda \) is called an eigenvalue of \(A\). If there is a nontrivial solution \({\bf{x}}\) of \(A{\bf{x}} = \lambda {\bf{x}}\) then \({\bf{x}}\) is called an eigenvector corresponding to \(\lambda \).

02

Show that \(\frac{{\bf{1}}}{{\lambda  - \alpha }}\)is an eigenvalue of \(B\), with \(x\) a corresponding eigenvector

As it is given that\(A{\bf{x}} = \lambda {\bf{x}}\)where\({\bf{x}} \ne 0\), and\(\alpha \left( { \ne \lambda } \right)\)is a scalar. Now we have to prove that\(\frac{1}{{\lambda - \alpha }}\)is an eigenvalue of\(B\)with the corresponding eigenvector\({\bf{x}}\)where\(B = {\left( {A - \alpha I} \right)^{ - 1}}\).

Write the standard Matrix equation for eigenvalue and eigenvector.

\(\begin{aligned}{c}A{\bf{x}} = \lambda {\bf{x}}\\A{\bf{x}} - \alpha {\bf{x}} = \lambda {\bf{x}} - \alpha {\bf{x}}\\A{\bf{x}} - \alpha I{\bf{x}} = \left( {\lambda - \alpha } \right){\bf{x}}\\\left( {A - \alpha I} \right){\bf{x}} = \left( {\lambda - \alpha } \right){\bf{x}}\\{\left( {A - \alpha I} \right)^{ - 1}}\left( {A - \alpha I} \right){\bf{x}} = {\left( {A - \alpha I} \right)^{ - 1}}\left( {\lambda - \alpha } \right){\bf{x}}\\I{\bf{x}} = {\left( {A - \alpha I} \right)^{ - 1}}\left( {\lambda - \alpha } \right){\bf{x}}\end{aligned}\)

Furthermore,

\(\begin{aligned}{c}I{\bf{x}} = {\left( {A - \alpha I} \right)^{ - 1}}\left( {\lambda - \alpha } \right){\bf{x}}\\{\bf{x}} = {\left( {A - \alpha I} \right)^{ - 1}}\left( {\lambda - \alpha } \right){\bf{x}}\\\frac{1}{{\lambda - \alpha }}{\bf{x}} = {\left( {A - \alpha I} \right)^{ - 1}}{\bf{x}}\end{aligned}\)

Thus,\(\frac{1}{{\lambda - \alpha }}\)is an eigenvalue of the matrix\(B = {\left( {A - \alpha I} \right)^{ - 1}}\).

It is proved that\(\frac{1}{{\lambda - \alpha }}\)is an eigenvalue of the matrix\(B = {\left( {A - \alpha I} \right)^{ - 1}}\)with \({\rm{x}}\) a corresponding eigenvector.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

2. \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}\)

Use Exercise 12 to find the eigenvalues of the matrices in Exercises 13 and 14.

13. \(A = \left( {\begin{array}{*{20}{c}}3&{ - 2}&8\\0&5&{ - 2}\\0&{ - 4}&3\end{array}} \right)\)

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

15. \(\left[ {\begin{array}{*{20}{c}}4&- 7&0&2\\0&3&- 4&6\\0&0&3&{ - 8}\\0&0&0&1\end{array}} \right]\)

Question: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.

3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)

For the Matrices A find real closed formulas for the trajectory x(t+1)=Ax(t)wherex(0)=[01]A=[2-332]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free