Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

Short Answer

Expert verified

The eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{aligned}} \right)\) is \( - 1\) and \(5\) and the eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}7&3&3&3&3\\3&7&3&3&3\\3&3&7&3&3\\3&3&3&7&3\\3&3&3&3&7\end{aligned}} \right)\) is \(5\) and \(19\).

Step by step solution

01

Step 1: Write the definition of eigenvalue

Eigenvalue:An eigenvector of \(n \times n\) the matrix \(A\) is a nonzero vector \({\bf{x}}\) such that \(A{\bf{x}} = \lambda {\bf{x}}\) for some scalar \(\lambda \) where scalar \(\lambda \) is called an eigenvalue of \(A\).

02

Step 2: Find the eigenvalues

Assume\(A = \left( {\begin{aligned}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{aligned}} \right)\).

From the exercise\(15\), the eigenvalues are \(\lambda = a - b\) and \(\lambda = a + \left( {n - 1} \right)b\).

Therefore,

Put \(a = 1\), \(b = 2\) and \(n = 3\).

\(\begin{aligned}{c}\lambda &= a - b\\ &= 1 - 2\\ &= - 1\end{aligned}\)

\(\begin{aligned}{c}\lambda &= a + \left( {n - 1} \right)b\\ &= 1 + \left( {3 - 1} \right)2\\ &= 5\end{aligned}\)

Thus, eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{aligned}} \right)\) are \( - 1\) and \(5\).

03

Step 3: Find the eigenvalues

Assume\(A = \left( {\begin{aligned}{*{20}{c}}7&3&3&3&3\\3&7&3&3&3\\3&3&7&3&3\\3&3&3&7&3\\3&3&3&3&7\end{aligned}} \right)\).

From the exercise \(15\), the eigenvalues are \(\lambda = a - b\) and \(\lambda = a + \left( {n - 1} \right)b\).

Therefore,

Put \(a = 7\), \(b = 3\) and \(n = 5\).

\(\begin{aligned}{c}\lambda &= a - b\\ &= 7 - 3\\ &= 5\end{aligned}\)

\(\begin{aligned}{c}\lambda &= a + \left( {n - 1} \right)b\\ &= 7 + \left( {5 - 1} \right)3\\ &= 19\end{aligned}\)

Thus, the eigenvalues for the matrix \(\left( {\begin{aligned}{*{20}{c}}7&3&3&3&3\\3&7&3&3&3\\3&3&7&3&3\\3&3&3&7&3\\3&3&3&3&7\end{aligned}} \right)\) are \(5\) and \(19\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Is \(\lambda = 2\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}3&2\\3&8\end{array}} \right)\)? Why or why not?

Use Exercise 12 to find the eigenvalues of the matrices in Exercises 13 and 14.

14. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{5}}&{{\bf{ - 6}}}&{{\bf{ - 7}}}\\{\bf{2}}&{\bf{4}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{{\bf{ - 7}}}&{{\bf{ - 4}}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{1}}\end{array}} \right)\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left[ {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right]\).

22. Let \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + {a_{\bf{2}}}{t^{\bf{2}}} + {t^{\bf{3}}}\), and let \(\lambda \) be a zero of \(p\).

  1. Write the companion matrix for \(p\).
  2. Explain why \({\lambda ^{\bf{3}}} = - {a_{\bf{0}}} - {a_{\bf{1}}}\lambda - {a_{\bf{2}}}{\lambda ^{\bf{2}}}\), and show that \(\left( {{\bf{1}},\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix for \(p\).

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free