Chapter 5: Q17E (page 267)
Find the eigenvalues of the matrices in Exercises 17 and 18.
17. \(A = \left( {\begin{array}{*{20}{c}}0&0&0\\0&2&5\\0&0&{ - 1}\end{array}} \right)\)
Short Answer
Eigenvalues of the given matrix are: 0,2 and \( - 1\)
Chapter 5: Q17E (page 267)
Find the eigenvalues of the matrices in Exercises 17 and 18.
17. \(A = \left( {\begin{array}{*{20}{c}}0&0&0\\0&2&5\\0&0&{ - 1}\end{array}} \right)\)
Eigenvalues of the given matrix are: 0,2 and \( - 1\)
All the tools & learning materials you need for study success - in one app.
Get started for free19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).
23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix
\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)
(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.
Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).
Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.
15. \(\left[ {\begin{array}{*{20}{c}}4&- 7&0&2\\0&3&- 4&6\\0&0&3&{ - 8}\\0&0&0&1\end{array}} \right]\)
Question: Let \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\). Use formula (1) for a determinant (given before Example 2) to show that \(\det A = ad - bc\). Consider two cases: \(a \ne 0\) and \(a = 0\).
Define \(T:{{\rm P}_2} \to {\mathbb{R}^3}\) by \(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 0 \right)}\\{{\bf{p}}\left( 1 \right)}\end{aligned}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.