(M) Use the inverse power method to estimate the middle eigenvalue of the \(A\) in Example 3, with accuracy to four decimal places. Set \({{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0}}} \right)\).

Short Answer

Expert verified

The middle eigenvalue is \ (3.3212\ ).

Step by step solution

01

Write the function of MATLAB

Consider \(A = \left( {\begin{aligned}{{20}{c}}{10}&{ - 8}&{ - 4}\\{ - 8}&{13}&4\\{ - 4}&5&4\end{aligned}} \right)\), \({{\bf{x}}_0} = \left

( {\begin{aligned}{{20}{c}}1\\0\\0\end{aligned}} \right)\)

Now calculate the middle eigenvalue of the matrix \(A\).

Write the required function of MATLAB

\({\rm{function}}\left( {{\rm{v,lambda}}} \right){\rm{ = IPM}}\left( {{\rm{B,tol}}} \right)\)

tic;

\({\rm{A}} = {\rm{inv}}\left( {\rm{B}} \right){\rm{;}}\)

\({\rm{n}} = {\rm{size}}\left( {{\rm{A}},1} \right);\)

\({\rm{v}} = {\rm{rand}}\left( {{\rm{n}},1} \right);\)

\({\rm{v}} = {\rm{v}}/{\rm{norm}}\left( {\rm{v}} \right);\)

\({\rm{res}} = 1;\)

\({\rm{while}}\left( {{\rm{rse}} > {\rm{tol}}} \right)\)

\({\rm{W}} = {\rm{A}}*{\rm{v}};\)

\({\rm{lambda}} = {\rm{max}}\left( {{\rm{abs}}\left( {\rm{W}} \right)} \right);\)

\({\rm{V}} = {\rm{W}}/{\rm{lamda}};\)

\({\rm{res}} = {\rm{norm}}\left( {{\rm{A}}*{\rm{v}} - {\rm{lambda}}*{\rm{v}}} \right);\)

toc;

end

02

Find the middle eigenvalue

Enter the Matrix\(B\)in MATLAB:

\(B = \left( {10{\rm{ }} - 8{\rm{ }} - 4; - 8{\rm{ }}13{\rm{ }}4;{\rm{ }} - 4{\rm{ }}5{\rm{ }}4} \right)\)

Enter the\({x_0}\)in MATLAB:

\({x_0} = \left( {\begin{aligned}{*{20}{c}}1&0&0\end{aligned}} \right)'\)

Now find the eigenvector.

IPM(B,tol)

Construct the data in the table shown below:

\(k\)

\(0\)

\(1\)

\(2\)

\({{\bf{x}}_k}\)

\(\left( {\begin{aligned}{*{20}{c}}1\\0\\0\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}1\\{.7873}\\{.0908}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}1\\{.7870}\\{.0957}\end{aligned}} \right)\)

\({{\bf{y}}_k}\)

\(\left( {\begin{aligned}{*{20}{c}}{26.0552}\\{20.5128}\\{2.3669}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}{47.1975}\\{37.1436}\\{4.5187}\end{aligned}} \right)\)

\(\left( {\begin{aligned}{*{20}{c}}{47.1233}\\{37.0866}\\{4.5083}\end{aligned}} \right)\)

\({\mu _k}\)

\(26.0552\)

\(47.1975\)

\(47.1233\)

\({v_k}\)

\(3.3384\)

\(3.32119\)

\(3.3212209\)

Thus, the middle eigenvalue is \(3.3212\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free