Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

Short Answer

Expert verified

It is proved that \(\det \left( {A - \lambda I} \right) = {\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). It is also proved that the eigenvalues of a \(2 \times 2\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{trA}}{2}} \right)^2}\).

Step by step solution

01

Step 1: Find the characteristic polynomial.

Determine\(\det \left( {A - \lambda I} \right)\).

\(\begin{aligned}{c}\det \left( {A - \lambda I} \right) &= \det \left( {\begin{aligned}{*{20}{c}}{{a_{11}} - \lambda }&{{a_{12}}}\\{{a_{21}}}&{{a_{22}} - \lambda }\end{aligned}} \right)\\ &= \left( {{a_{11}} - \lambda } \right)\left( {{a_{22}} - \lambda } \right) - {a_{12}}{a_{21}}\\ &= {\lambda ^2} - {a_{11}}\lambda - {a_{22}}\lambda + {a_{11}}{a_{22}} - {a_{12}}{a_{21}}\\ &= {\lambda ^2} - \left( {{a_{11}} + {a_{22}}} \right)\lambda + \left( {{a_{11}}{a_{22}} - {a_{12}}{a_{21}}} \right)\end{aligned}\)

Now use a trace of \(A\), that is, \({\rm{tr}}\;A = {a_{11}} + {a_{22}}\) then we have,

\(\det \left( {A - \lambda I} \right) = {\lambda ^2} - \left( {trA} \right)\lambda + \det A\)

Hence it is proved that\(\det \left( {A - \lambda I} \right) = {\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\).

02

Step 2: Show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\)

Determine the eigenvalues of \(A\).

\(\begin{aligned}{c}\det \left( {A - \lambda I} \right) &= 0\\{\lambda ^2} - \left( {{\rm{tr}}\;A} \right)\lambda + \det A &= 0\\\lambda &= \frac{{tr\;A \pm \sqrt {{{\left( {tr\;A} \right)}^2} - 4\det A} }}{2}\end{aligned}\)

As eigenvalues are positive if the discriminant is positive.

\(\begin{aligned}{c}{\left( {{\rm{tr}}A} \right)^2} - 4\det A \ge 0\\{\left( {{\rm{tr}}A} \right)^2} \ge 4\det A\\\frac{{{{\left( {{\rm{tr}}A} \right)}^2}}}{4} \ge \det A\\{\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2} \ge \det A\end{aligned}\)

Thus, \(\det A \le {\left( {\frac{{trA}}{2}} \right)^2}\).

Hence it is proved that the eigenvalues of a \(2 \times 2\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{trA}}{2}} \right)^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

  1. \(\left[ {\begin{array}{*{20}{c}}2&7\\7&2\end{array}} \right]\)

Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.

  1. Explain why \(H\) is invariant under \(A\) in the sense that \(A{\bf{x}}\) is in \(H\) whenever \({\bf{x}}\) is in \(H\).
  2. Let \(K\) be a one-dimensional subspace of \({\mathbb{R}^{\bf{n}}}\) that is invariant under \(A\). Explain why \(K\) contains an eigenvector of \(A\).

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

16. \(\left[ {\begin{array}{*{20}{c}}5&0&0&0\\8&- 4&0&0\\0&7&1&0\\1&{ - 5}&2&1\end{array}} \right]\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

For the matrix A, find real closed formulas for the trajectoryx(t+1)=Ax¯(t)where x=[01]. Draw a rough sketch

A=[15-27]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free