In Exercises 9-18, construct the general solution of \(x' = Ax\) involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories.

18. (M) \(A = \left( {\begin{aligned}{ {20}{c}}{53}&{ - 30}&{ - 2}\\{90}&{ - 52}&{ - 3}\\{20}&{ - 10}&2\end{aligned}} \right)\)

Short Answer

Expert verified

The general complex solution of \(x' = Ax\) is \(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}1\\2\\0\end{aligned}} \right){e^{ - 7t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{6 + 2i}\\{9 + 3i}\\{10}\end{aligned}} \right){e^{\left( {5 + i} \right)t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{6 - 2i}\\{9 - 3i}\\{10}\end{aligned}} \right){e^{\left( {5 - i} \right)t}}\). The real general solution is of the form

\(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}1\\2\\0\end{aligned}} \right){e^{ - 7t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{6\cos t - 2\sin t}\\{9\cos t - 3\sin t}\\{10\cos t}\end{aligned}} \right){e^{5t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{6\sin t + 2\cos t}\\{9\sin t + 3\cos t}\\{10\cos t}\end{aligned}} \right){e^{5t}}\). If \({c_2} = {c_3} = 0\), then trajectories tend toward the origin, whereas in the other case, the trajectories spiral away from the origin.

Step by step solution

01

Determine the eigenvalues and eigenvector of the matrix

The given matrix is \(A = \left( {\begin{aligned}{ {20}{c}}{53}&{ - 30}&{ - 2}\\{90}&{ - 52}&{ - 3}\\{20}&{ - 10}&2\end{aligned}} \right)\).

Use the MATLAB code to compute the eigenvalues of the matrix \(A\) as shown below:

\(\begin{aligned}{l} > > {\mathop{\rm A}\nolimits} = \left( {53\,\,\, - 30\,\,\, - 2;\,90\,\,\, - 52\,\,\, - 3;\,20\,\,\, - 10\,\,\,2} \right)\\ > > {\mathop{\rm ev}\nolimits} = {\mathop{\rm eig}\nolimits} \left( {\mathop{\rm A}\nolimits} \right)\end{aligned}\)

\({\mathop{\rm ev}\nolimits} = \left( {\begin{aligned}{ {20}{c}}{ - 7.0000}&{}&{}\\{5.0000}& + &{1.0000{\mathop{\rm i}\nolimits} }\\{5.0000}& - &{1.0000{\mathop{\rm i}\nolimits} }\end{aligned}} \right)\)

Use the MATLAB code to compute the eigenvector of the matrix A as shown below:

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 1 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{0.5000}\\{1.0000}\\{0.0000}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _1} = \left( {\begin{aligned}{ {20}{c}}1\\2\\0\end{aligned}} \right)\).

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 2 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{0.6000}& + &{0.2000{\mathop{\rm i}\nolimits} }\\{0.9000}& + &{0.3000{\mathop{\rm i}\nolimits} }\\{1.0000}&{}&{}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _2} = \left( {\begin{aligned}{ {20}{c}}{6 + 2{\mathop{\rm i}\nolimits} }\\{9 + 3{\mathop{\rm i}\nolimits} }\\{10}\end{aligned}} \right)\).

\( > > {\mathop{\rm nulbasis}\nolimits} \left( {{\mathop{\rm A}\nolimits} - {\mathop{\rm ev}\nolimits} \left( 3 \right) {\mathop{\rm eye}\nolimits} \left( 3 \right)} \right)\)

\(\left( {\begin{aligned}{ {20}{c}}{0.6000}& - &{0.2000{\mathop{\rm i}\nolimits} }\\{0.9000}& - &{0.3000{\mathop{\rm i}\nolimits} }\\{1.0000}&{}&{}\end{aligned}} \right)\). Therefore, \({{\mathop{\rm v}\nolimits} _3} = \left( {\begin{aligned}{ {20}{c}}{6 - 2{\mathop{\rm i}\nolimits} }\\{9 - 3{\mathop{\rm i}\nolimits} }\\{10}\end{aligned}} \right)\).

02

Construct the general solution of \(x' = Ax\)

Therefore, the general complex solution of \(x' = Ax\) is \(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}1\\2\\0\end{aligned}} \right){e^{ - 7t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{6 + 2i}\\{9 + 3i}\\{10}\end{aligned}} \right){e^{\left( {5 + i} \right)t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{6 - 2i}\\{9 - 3i}\\{10}\end{aligned}} \right){e^{\left( {5 - i} \right)t}}\), with \({c_1}\) , and \({c_2}\) are arbitrary complex numbers.

03

Determine the real general solution and describe the shape of the trajectories

Rewrite the second eigenfunction of the matrix as shown below:

\(\left( {\begin{aligned}{ {20}{c}}{6 + 2i}\\{9 + 3i}\\{10}\end{aligned}} \right){e^{5t}}\left( {\cos t + i\sin t} \right) = \left( {\begin{aligned}{ {20}{c}}{6\cos t - 2\sin t}\\{9\cos t - 3\sin t}\\{10\cos t}\end{aligned}} \right){e^{5t}} + i\left( {\begin{aligned}{ {20}{c}}{6\sin t + 2\cos t}\\{9\sin t - 3\cos t}\\{10\sin t}\end{aligned}} \right){e^{5t}}\)

Therefore, the real general solution is of the form as shown below:

\(x\left( t \right) = {c_1}\left( {\begin{aligned}{ {20}{c}}1\\2\\0\end{aligned}} \right){e^{ - 7t}} + {c_2}\left( {\begin{aligned}{ {20}{c}}{6\cos t - 2\sin t}\\{9\cos t - 3\sin t}\\{10\cos t}\end{aligned}} \right){e^{5t}} + {c_3}\left( {\begin{aligned}{ {20}{c}}{6\sin t + 2\cos t}\\{9\sin t + 3\cos t}\\{10\cos t}\end{aligned}} \right){e^{5t}}\),

Where \({c_1},{c_2},\) and \({c_2}\) are real numbers.

It is observed that the if \({c_2} = {c_3} = 0\), then trajectories tend toward the origin, while in some cases, the trajectories spiral away from the origin.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. If \(A\) is \(3 \times 3\), with columns \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\), then \(\det A\) equals the volume of the parallelepiped determined by \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\).
  2. \(\det {A^T} = \left( { - 1} \right)\det A\).
  3. The multiplicity of a root \(r\) of the characteristic equation of \(A\) is called the algebraic multiplicity of \(r\) as an eigenvalue of \(A\).
  4. A row replacement operation on \(A\) does not change the eigenvalues.

Show that \(I - A\) is invertible when all the eigenvalues of \(A\) are less than 1 in magnitude. (Hint: What would be true if \(I - A\) were not invertible?)

Suppose \(A = PD{P^{ - 1}}\), where \(P\) is \(2 \times 2\) and \(D = \left( {\begin{array}{*{20}{l}}2&0\\0&7\end{array}} \right)\)

a. Let \(B = 5I - 3A + {A^2}\). Show that \(B\) is diagonalizable by finding a suitable factorization of \(B\).

b. Given \(p\left( t \right)\) and \(p\left( A \right)\) as in Exercise 5 , show that \(p\left( A \right)\) is diagonalizable.

A particle moving in a planar force field has a position vector .\(x\). that satisfies \(x' = Ax\). The \(2 \times 2\) matrix \(A\) has eigenvalues 4 and 2, with corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{{20}{c}}{ - 3}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{{20}{c}}{ - 1}\\1\end{aligned}} \right)\). Find the position of the particle at a time \(t\), assuming that \(x\left( 0 \right) = \left( {\begin{aligned}{{20}{c}}{ - 6}\\1\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free