Chapter 5: Q26E (page 267)
Question: Show that if \({A^{\bf{2}}}\) is the zero matrix, then the only eigenvalue of A is 0.
Short Answer
If the matrix \({A^2}\) is zero, then each eigenvalue of A is zero.
Chapter 5: Q26E (page 267)
Question: Show that if \({A^{\bf{2}}}\) is the zero matrix, then the only eigenvalue of A is 0.
If the matrix \({A^2}\) is zero, then each eigenvalue of A is zero.
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: In Exercises \({\bf{3}}\) and \({\bf{4}}\), use the factorization \(A = PD{P^{ - {\bf{1}}}}\) to compute \({A^k}\) where \(k\) represents an arbitrary positive integer.
3. \(\left( {\begin{array}{*{20}{c}}a&0\\{3\left( {a - b} \right)}&b\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}a&0\\0&b\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&1\end{array}} \right)\)
Suppose \(A = PD{P^{ - 1}}\), where \(P\) is \(2 \times 2\) and \(D = \left( {\begin{array}{*{20}{l}}2&0\\0&7\end{array}} \right)\)
a. Let \(B = 5I - 3A + {A^2}\). Show that \(B\) is diagonalizable by finding a suitable factorization of \(B\).
b. Given \(p\left( t \right)\) and \(p\left( A \right)\) as in Exercise 5 , show that \(p\left( A \right)\) is diagonalizable.
Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.
5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)
[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].
Let \({\bf{u}}\) be an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \), and let \(H\) be the line in \({\mathbb{R}^{\bf{n}}}\) through \({\bf{u}}\) and the origin.
What do you think about this solution?
We value your feedback to improve our textbook solutions.