Question: Show that if \(\lambda \) is an eigenvalue of A if and only if \(\lambda \) is an eigenvalue of \({A^T}\). (Find out how \(A - \lambda I\) and \({A^T} - \lambda I\) are related.)

Short Answer

Expert verified

It is proved that \(\lambda \) must be the eigenvalue of both A and \({A^T}\).

Step by step solution

01

Write the given information

Here, \(\lambda \) is the eigenvalue of a matrix A.

02

Check for the eigenvalue of \(A\)

Find the relation between \(A - \lambda I\) and \({A^T} - \lambda I\).

\(\begin{array}{c}{\left( {A - \lambda I} \right)^T} = {A^T} - {\left( {\lambda I} \right)^T}\\ = {A^T} - \lambda I\end{array}\)

So, \({\left( {A - \lambda I} \right)^T}\) is invertible if and only if \(A - \lambda I\) is invertible.

According to theorem 6(c), \({A^T} - \lambda I\) is not invertible if only if \(A - \lambda I\) is not invertible.

Therefore, \(\lambda \) must be the eigenvalue of both A and \({A^T}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

6. \(\left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\)

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{1}}\\{\bf{0}}&{\bf{5}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free