Let \(A\) be a \(2 \times 2\) matrix with eigenvalues \( - {\bf{3}}\) and \( - {\bf{1}}\), and corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{ {20}{c}}1\\1\end{aligned}} \right)\). Let \(x\left( t \right)\) be the position of a particle at time \(t\). Solve the initial value problem \(x' = Ax\), \(x\left( 0 \right) = \left( {\begin{aligned}{ {20}{c}}{\bf{2}}\\{\bf{3}}\end{aligned}} \right)\).

Short Answer

Expert verified

The required solution is:

\(x(t) = \left( {\begin{aligned}{ {20}{c}}{ - 0.5{e^{ - 3t}} + 2.5{e^{ - t}}}\\{0.5{e^{ - 3t}} + 2.5{e^{ - t}}}\end{aligned}} \right)\)

Step by step solution

01

System of Differential Equations

The general solutionfor any system of differential equations withthe eigenvalues\({\lambda _1}\)and\({\lambda _2}\)with the respective eigenvectors\({v_1}\)and\({v_2}\)is given by:

\(x(t) = {c_1}{v_1}{e^{{\lambda _1}t}} + {c_2}{v_2}{e^{{\lambda _2}t}}\)

Here, \({c_1}\) and \({c_2}\) are the constants from the initial condition.

02

Find the general solution

According to the question;

Consider the eigenvalues of\(A\)be\({\lambda _1} = - 3\)and\({\lambda _2} = - 1\)with respective eigenvectors:

\({v_1} = \left( {\begin{aligned}{ {20}{c}}{ - 1}\\1\end{aligned}} \right)\)and\({v_2} = \left( {\begin{aligned}{ {20}{c}}1\\1\end{aligned}} \right)\)

Then the general solution of the equation\(x' = A{\rm{x}}\)is:

\(\begin{aligned}{c}x(t) = {c_1}{v_1}{e^{{\lambda _1}t}} + {c_2}{v_2}{e^{{\lambda _2}t}}\\ = {c_1}\left( {\begin{aligned}{ {20}{c}}{ - 1}\\1\end{aligned}} \right){e^{ - 3t}} + {c_2}\left( {\begin{aligned}{ {20}{l}}1\\1\end{aligned}} \right){e^{ - t}}\\ = \left( {\begin{aligned}{ {20}{c}}{ - {c_1}{e^{ - 3t}} + {c_2}{e^{ - t}}}\\{{c_1}{e^{ - 3t}} + {c_2}{e^{ - t}}}\end{aligned}} \right)\end{aligned}\)

Substituting the initial condition\(x(0) = \left( {\begin{aligned}{ {20}{l}}2\\3\end{aligned}} \right)\), we get:

\(\left( {\begin{aligned}{ {20}{c}}{ - {c_1} + {c_2}}\\{{c_1} + {c_2}}\end{aligned}} \right) = \left( {\begin{aligned}{ {20}{l}}2\\3\end{aligned}} \right)\)

Solving this system, we have:\({c_1} = 0.5,\;\;\;{c_2} = 2.5\), and the solution is:

\(\begin{aligned}{c}x(t) = 0.5\left( {\begin{aligned}{ {20}{c}}{ - 1}\\1\end{aligned}} \right){e^{ - 3t}} + 2.5\left( {\begin{aligned}{ {20}{l}}1\\1\end{aligned}} \right){e^{ - t}}\\ = \left( {\begin{aligned}{ {20}{c}}{ - 0.5{e^{ - 3t}} + 2.5{e^{ - t}}}\\{0.5{e^{ - 3t}} + 2.5{e^{ - t}}}\end{aligned}} \right)\end{aligned}\)

Hence, this is the required solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is

\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

17. \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\- 5&1&0&0&0\\3&8&0&0&0\\0&- 7&2&1&0\\- 4&1&9&- 2&3\end{array}} \right]\)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

8. \(\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{1}}\\{\bf{0}}&{\bf{5}}\end{array}} \right)\)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

3. \(\left[ {\begin{array}{*{20}{c}}3&-2\\1&-1\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free