Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

Short Answer

Expert verified

The value is \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{ - \frac{1}{{35}}}\\{ - \frac{1}{7}}\end{array}} \right)\).

Step by step solution

01

Inner product

Consider \({\mathop{\rm u}\nolimits} ,v,\) and \({\mathop{\rm w}\nolimits} \) as the vectors in \({\mathbb{R}^n}\) and consider \(c\) as the scalar. Then

  1. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} = {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm u}\nolimits} \)
  2. \(\left( {{\mathop{\rm u}\nolimits} + {\mathop{\rm v}\nolimits} } \right) \cdot {\mathop{\rm w}\nolimits} = {\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} + {\mathop{\rm v}\nolimits} \cdot {\mathop{\rm w}\nolimits} \)
  3. \(\left( {c{\mathop{\rm u}\nolimits} } \right) \cdot {\mathop{\rm v}\nolimits} = c\left( {{\mathop{\rm u}\nolimits} \cdot {\mathop{\rm v}\nolimits} } \right) = {\mathop{\rm u}\nolimits} \cdot \left( {c{\mathop{\rm v}\nolimits} } \right)\)
  4. \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} \ge 0\)and \({\mathop{\rm u}\nolimits} \cdot {\mathop{\rm u}\nolimits} = 0\) if and only if \({\mathop{\rm u}\nolimits} = 0\).
02

Compute

\(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

It is given that \({\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\).

Evaluate \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} \) as shown below:

\(\begin{array}{c}{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} &= \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\\ &= {3^2} + {\left( { - 1} \right)^2} + {\left( { - 5} \right)^2}\\ &= 9 + 1 + 25\\ = 35\end{array}\)

Compute \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \) as shown below:

\(\begin{array}{c}\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} &= \frac{1}{{35}}\left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{\frac{{ - 1}}{{35}}}\\{\frac{{ - 5}}{{35}}}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{\frac{{ - 1}}{{35}}}\\{\frac{{ - 1}}{7}}\end{array}} \right)\end{array}\)

Thus, the value is \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}{\frac{3}{{35}}}\\{ - \frac{1}{{35}}}\\{ - \frac{1}{7}}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right)\) an eigenvector of\(\left){\begin{array}{*{20}{c}}3&6&7\\3&3&7\\5&6&5\end{array}} \right)\)? If so, find the eigenvalue.

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left[ {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right]\).

22. Let \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + {a_{\bf{2}}}{t^{\bf{2}}} + {t^{\bf{3}}}\), and let \(\lambda \) be a zero of \(p\).

  1. Write the companion matrix for \(p\).
  2. Explain why \({\lambda ^{\bf{3}}} = - {a_{\bf{0}}} - {a_{\bf{1}}}\lambda - {a_{\bf{2}}}{\lambda ^{\bf{2}}}\), and show that \(\left( {{\bf{1}},\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix for \(p\).

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\), \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\), \({{\rm{v}}_2} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\), \({{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\) and \({\rm{w}} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

  1. Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\), and \({{\rm{v}}_3}\) are eigenvectors of \(A\). (Note: \(A\) is the stochastic matrix studied in Example 3 of Section 4.9.)
  2. Let \({{\rm{x}}_0}\) be any vector in \({\mathbb{R}^3}\) with non-negative entries whose sum is 1. (In section 4.9, \({{\rm{x}}_0}\) was called a probability vector.) Explain why there are constants \({c_1}\), \({c_2}\), and \({c_3}\) such that \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\). Compute \({{\rm{w}}^T}{{\rm{x}}_0}\), and deduce that \({c_1} = 1\).
  3. For \(k = 1,2, \ldots ,\) define \({{\rm{x}}_k} = {A^k}{{\rm{x}}_0}\), with \({{\rm{x}}_0}\) as in part (b). Show that \({{\rm{x}}_k} \to {{\rm{v}}_1}\) as \(k\) increases.

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

12. \(\left[ {\begin{array}{*{20}{c}}- 1&0&1\\- 3&4&1\\0&0&2\end{array}} \right]\)

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

2. \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free