Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\), \({{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\), \({{\rm{v}}_2} = \left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\), \({{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\) and \({\rm{w}} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

  1. Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\), and \({{\rm{v}}_3}\) are eigenvectors of \(A\). (Note: \(A\) is the stochastic matrix studied in Example 3 of Section 4.9.)
  2. Let \({{\rm{x}}_0}\) be any vector in \({\mathbb{R}^3}\) with non-negative entries whose sum is 1. (In section 4.9, \({{\rm{x}}_0}\) was called a probability vector.) Explain why there are constants \({c_1}\), \({c_2}\), and \({c_3}\) such that \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\). Compute \({{\rm{w}}^T}{{\rm{x}}_0}\), and deduce that \({c_1} = 1\).
  3. For \(k = 1,2, \ldots ,\) define \({{\rm{x}}_k} = {A^k}{{\rm{x}}_0}\), with \({{\rm{x}}_0}\) as in part (b). Show that \({{\rm{x}}_k} \to {{\rm{v}}_1}\) as \(k\) increases.

Short Answer

Expert verified
  1. It is proved that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\) and \({{\rm{v}}_3}\) are eigenvectors of \(A\).
  2. \({{\rm{w}}^T}{{\rm{x}}_0} = {c_1}{{\rm{w}}^T}{{\rm{v}}_1} + {c_2}{{\rm{w}}^T}{{\rm{v}}_2} + {c_3}{{\rm{w}}^T}{{\rm{v}}_3}\). It is deduced that \({c_1} = 1\).
  3. It is proved that \({{\rm{x}}_k} \to {{\rm{v}}_1}\) as \(k\) increases.

Step by step solution

01

Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\) and \({{\rm{v}}_3}\) are eigenvectors of \(A\)

Find the value of \(A{{\rm{v}}_1}\), \(A{{\rm{v}}_2}\) and \(A{{\rm{v}}_3}\).

\[\begin{array}A{{\rm{v}}_1} = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{.3}\\{.6}\\{.1}\end{array}} \right)\\ = {{\rm{v}}_1}\end{array}\]

\[\begin{array}A{{\rm{v}}_2} = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{0.5}\\{ - 1.5}\\1\end{array}} \right)\\ = 0.5\left( {\begin{array}{*{20}{c}}1\\{ - 3}\\2\end{array}} \right)\\ = 0.5{{\rm{v}}_2}\end{array}\]

And,

\[\begin{array}{c}A{{\rm{v}}_3} = \left( {\begin{array}{*{20}{c}}{.5}&{.2}&{.3}\\{.3}&{.8}&{.3}\\{.2}&0&{.4}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\\ = 0.2{{\rm{v}}_3}\end{array}\]

As \(A{{\rm{v}}_1} = {{\rm{v}}_1}\), \(A{{\rm{v}}_2} = 0.5{{\rm{v}}_2}\) and \(A{{\rm{v}}_3} = 0.2{{\rm{v}}_3}\), this implies that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\) and \({{\rm{v}}_3}\) are eigenvectors of \(A\).

02

Show that \({{\rm{v}}_1}\), \({{\rm{v}}_2}\) and \({{\rm{v}}_3}\) are eigenvectors of \(A\)

If \({v_1}, \ldots ,{v_r}\) are eigenvectors that correspond to distinct eigenvalues \({\lambda _1}, \ldots ,{\lambda _r}\) of an \(n \times n\) matrix \(A\), then the set \(\left\{ {{v_1}, \ldots ,{v_r}} \right\}\) is linearly independent.

This implies that \(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2},{{\rm{v}}_3}} \right\}\) is linearly independent, and the vectors in the set are the basis for \({\mathbb{R}^3}\).

There exists a constant which satisfies the condition \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\).

Write \({{\rm{w}}^T}{{\rm{x}}_0}\) as:

\[{{\rm{w}}^T}{{\rm{x}}_0} = {c_1}{{\rm{w}}^T}{{\rm{v}}_1} + {c_2}{{\rm{w}}^T}{{\rm{v}}_2} + {c_3}{{\rm{w}}^T}{{\rm{v}}_3}\]

As \({{\rm{x}}_0}\) and \({{\rm{v}}_1}\) are probability vectors and the sum of the entries of vector \({{\rm{v}}_2}\) and \({{\rm{v}}_3}\) is zero, so from the obtained equation, we obtain that \({c_1} = 1\).

03

Show that \({x_k} \to {v_1}\) as \(k\) increases

Consider \(k = 1,2,3, \ldots \) , and it is given that \({x_k} = {A^k}{x_0}\).

Substitute \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}\) into \({x_k} = {A^k}{x_0}\) and simplify.

\[\begin{array}{c}{x_k} = {A^k}\left( {{c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2} + {c_3}{{\rm{v}}_3}} \right)\\ = {c_1}{A^k}{{\rm{v}}_1} + {c_2}{A^k}{{\rm{v}}_2} + {c_3}{A^k}{{\rm{v}}_3}\\ = {{\rm{v}}_1} + {c_2}{\left( {0.5} \right)^k}{{\rm{v}}_2} + {c_3}{\left( {0.2} \right)^k}{{\rm{v}}_3}\end{array}\]

It is observed that as the value of \(k\) increases, \({x_k} \to {v_1}\).

It is proved that \({x_k} \to {v_1}\) as \(k\) increases.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the Matrices A find real closed formulas for the trajectory x(t+1)=Ax(t)wherex(0)=[01]A=[2-332]

A common misconception is that if \(A\) has a strictly dominant eigenvalue, then, for any sufficiently large value of \(k\), the vector \({A^k}{\bf{x}}\) is approximately equal to an eigenvector of \(A\). For the three matrices below, study what happens to \({A^k}{\bf{x}}\) when \({\bf{x = }}\left( {{\bf{.5,}}{\bf{.5}}} \right)\), and try to draw general conclusions (for a \({\bf{2 \times 2}}\) matrix).

a. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{{\bf{.8}}}&{\bf{0}}\\{\bf{0}}&{{\bf{.2}}}\end{aligned}} \right)\) b. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{{\bf{.8}}}\end{aligned}} \right)\) c. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{8}}&{\bf{0}}\\{\bf{0}}&{\bf{2}}\end{aligned}} \right)\)

A particle moving in a planar force field has a position vector .\(x\). that satisfies \(x' = Ax\). The \(2 \times 2\) matrix \(A\) has eigenvalues 4 and 2, with corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{{20}{c}}{ - 3}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{{20}{c}}{ - 1}\\1\end{aligned}} \right)\). Find the position of the particle at a time \(t\), assuming that \(x\left( 0 \right) = \left( {\begin{aligned}{{20}{c}}{ - 6}\\1\end{aligned}} \right)\).

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)

2. \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}\)

[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free