Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

3. \(\left[ {\begin{array}{*{20}{c}}3&-2\\1&-1\end{array}} \right]\)

Short Answer

Expert verified

Characteristic polynomial:\({\lambda ^2} - 2\lambda - 1\).

Eigenvalues: \(\lambda = 1 + \sqrt 2 \) and \(\lambda = 1 - \sqrt 2 \).

Step by step solution

01

Find the characteristic polynomial

Ifis an\(n \times n\)matrix, then\(det\left( {A - \lambda I} \right)\), which is a polynomial of degree\(n\), is called the characteristic polynomial of\(A\).

It is given that \(A = \left[ {\begin{array}{*{20}{c}}3&- 2\\1&- 1\end{array}} \right]\) and \(I = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\) is identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\) as shown below:

\[\begin{array} - \lambda I = \left[ {\begin{array}{*{20}{c}}3&- 2\\1&- 1\end{array}} \right] - \lambda \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 2}\\1&{ - 1 - \lambda }\end{array}} \right]\end{array}\]

Now, calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\[\begin{array}det\left( {A - \lambda I} \right) = det\left[ {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 2}\\1&{ - 1 - \lambda }\end{array}} \right]\\ = \left( {3 - \lambda } \right)\left( { - 1 - \lambda } \right) + 2\\ = {\lambda ^2} - 2\lambda - 1\end{array}\]

So, the characteristic polynomial of is \({\lambda ^2} - 2\lambda - 1\).

02

Describe the characteristic equation

To find the eigenvalues of the matrix, we must calculate all the scalarssuch that\(\left( {A - \lambda I} \right)x = 0\) has a non-trivial solution which is equivalent to finding allsuch that the matrix\(\left( {A - \lambda I} \right)\)is not invertible, that is, when determinant of\(\left( {A - \lambda I} \right)\)is zero.

Thus, the eigenvalues of\(A\)are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, find the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\).

\[\begin{array}det\left[ {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 2}\\1&{ - 1 - \lambda }\end{array}} \right] = 0\\\left( {3 - \lambda } \right)\left( { - 1 - \lambda } \right) + 2 = 0\\{\lambda ^2} - 2\lambda - 3 + 2 = 0\\{\lambda ^2} - 2\lambda - 1 = 0\end{array}\]

03

Find roots of characteristic equation

For the quadratic equation,\(a{x^2} + bx + c = 0\), the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\).

Thus, the solution of the characteristic equation\[{\lambda ^2} - 2\lambda - 1 = 0\]is obtained as follows:

\[\begin{array}{\lambda ^2} - 2\lambda - 1 = 0\\\lambda = \frac{{ - \left( { - 2} \right) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4\left( { - 1} \right)} }}{2}\\ = \frac{{2 \pm 2\sqrt 2 }}{2}\\ = 1 \pm \sqrt 2 \end{array}\]

The eigenvalues of \(A\) are \(\lambda = 1 + \sqrt 2 \) and \(\lambda = 1 - \sqrt 2 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{3}}\\{\bf{4}}&{\bf{1}}\end{array}} \right)\)

Suppose \(A\) is diagonalizable and \(p\left( t \right)\) is the characteristic polynomial of \(A\). Define \(p\left( A \right)\) as in Exercise 5, and show that \(p\left( A \right)\) is the zero matrix. This fact, which is also true for any square matrix, is called the Cayley-Hamilton theorem.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

12. \(\left[ {\begin{array}{*{20}{c}}- 1&0&1\\- 3&4&1\\0&0&2\end{array}} \right]\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free