Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

Short Answer

Expert verified

Characteristic polynomial:\({\lambda ^2} - 8\lambda + 3\).

Eigenvalues: \(\lambda = 4 + \sqrt {13} \) and \(\lambda = 4 - \sqrt {13} \).

Step by step solution

01

Find the characteristic polynomial

Ifis an\(n \times n\)matrix, then\(det\left( {A - \lambda I} \right)\), which is a polynomial of degree\(n\), is called the characteristic polynomial of\(A\).

It is given that \(A = \left[ {\begin{array}{*{20}{c}}5& - 3\\ - 4&3\end{array}} \right]\) and \(I = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\) is identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\) as shown below:

\[\begin{array}A - \lambda I = \left[ {\begin{array}{*{20}{c}}5& - 3\\ - 4&3\end{array}} \right] - \lambda \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{5 - \lambda }&{ - 3}\\{ - 4}&{3 - \lambda }\end{array}} \right]\;\end{array}\]

Now, calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\[\begin{array}det\left( {A - \lambda I} \right) = det\left[ {\begin{array}{*{20}{c}}{5 - \lambda }&{ - 3}\\{ - 4}&{3 - \lambda }\end{array}} \right]\\ = \left( {5 - \lambda } \right)\left( {3 - {\rm{\lambda }}} \right) - 12\\ = {\lambda ^2} - 8\lambda + 15 - 12\\ = {\lambda ^2} - 8\lambda + 3\end{array}\]

So, the characteristic polynomial of is \({\lambda ^2} - 8\lambda + 3\).

02

Describe the characteristic equation

To find the eigenvalues of the matrix, we must calculate all the scalarssuch that\(\left( {A - \lambda I} \right)x = 0\) has a non-trivial solution which is equivalent to finding allsuch that the matrix\(\left( {A - \lambda I} \right)\)is not invertible, that is, when determinant of\(\left( {A - \lambda I} \right)\)is zero.

Thus, the eigenvalues of \(A\) are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, find the characteristic equation \(\det \left( {A - \lambda I} \right) = 0\).

\[\begin{array}det\left[ {\begin{array}{*{20}{c}}{5 - \lambda }&{ - 3}\\{ - 4}&{3 - \lambda }\end{array}} \right] = 0\\\left( {5 - \lambda } \right)\left( {3 - {\rm{\lambda }}} \right) - 12 = 0\\{\lambda ^2} - 8\lambda + 15 - 12 = 0\\{\lambda ^2} - 8\lambda + 3 = 0\end{array}\]

03

Find roots of characteristic equation

For the quadratic equation,\(a{x^2} + bx + c = 0\), the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\).

Thus, the solution of the characteristic equation \[{\lambda ^2} - 8\lambda + 3 = 0\] is obtained as follows:

\[\begin{array}{c}{\lambda ^2} - 8\lambda + 3 = 0\\\lambda = \frac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)} }}{2}\\ = \frac{{8 \pm 2\sqrt {13} }}{2}\\ = 4 \pm \sqrt {13} \end{array}\]

The eigenvalues of \(A\) are \(\lambda = 4 + \sqrt {13} \) and \(\lambda = 4 - \sqrt {13} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=ATx(t)What can you say about the stability of the systems.

x(t+1)=ATx(t)

Question 18: It can be shown that the algebraic multiplicity of an eigenvalue \(\lambda \) is always greater than or equal to the dimension of the eigenspace corresponding to \(\lambda \). Find \(h\) in the matrix \(A\) below such that the eigenspace for \(\lambda = 5\) is two-dimensional:

\[A = \left[ {\begin{array}{*{20}{c}}5&{ - 2}&6&{ - 1}\\0&3&h&0\\0&0&5&4\\0&0&0&1\end{array}} \right]\]

19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix

\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)

(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

16. \(\left[ {\begin{array}{*{20}{c}}5&0&0&0\\8&- 4&0&0\\0&7&1&0\\1&{ - 5}&2&1\end{array}} \right]\)

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free