Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)

Short Answer

Expert verified

Characteristic polynomial: \({\lambda ^2} - 6\lambda + 9\).

Eigenvalues: \(\lambda = 3\) with a multiplicity of 2.

Step by step solution

01

Find the characteristic polynomial

Ifis an\(n \times n\)matrix, then\(det\left( {A - \lambda I} \right)\), which is a polynomial of degree\(n\), is called the characteristic polynomial of\(A\).

It is given that \(A = \left[ {\begin{array}{*{20}{c}}2&1\\ - 1&4\end{array}} \right]\) and \(I = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\) is identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\) as shown below:

\[\begin{array}A - \lambda I = \left[ {\begin{array}{*{20}{c}}2&1\\ - 1&4\end{array}} \right] - \lambda \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{2 - \lambda }&1\\{ - 1}&{4 - \lambda }\end{array}} \right]\end{array}\]

Now, calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\[\begin{array}det\left( {A - \lambda I} \right) = det\left[ {\begin{array}{*{20}{c}}{2 - \lambda }&1\\{ - 1}&{4 - \lambda }\end{array}} \right]\\ = \left( {2 - \lambda } \right)\left( {4 - {\rm{\lambda }}} \right) + 1\\ = {\lambda ^2} - 6\lambda + 8 + 1\\ = {\lambda ^2} - 6\lambda + 9\end{array}\]

So, the characteristic polynomial of is \[{\lambda ^2} - 6\lambda + 9\].

02

Describe the characteristic equation

To find the eigenvalues of the matrix, we must calculate all the scalarssuch that\(\left( {A - \lambda I} \right)x = 0\) has a non-trivial solution which is equivalent to finding allsuch that the matrix\(\left( {A - \lambda I} \right)\)is not invertible, that is, when determinant of\(\left( {A - \lambda I} \right)\)is zero.

Thus, the eigenvalues of \(A\) are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, find the characteristic equation \(\det \left( {A - \lambda I} \right) = 0\).

\[\begin{array}det\left[ {\begin{array}{*{20}{c}}{2 - \lambda }&1\\{ - 1}&{4 - \lambda }\end{array}} \right] = 0\\\left( {2 - \lambda } \right)\left( {4 - {\rm{\lambda }}} \right) + 1 = 0\\{\lambda ^2} - 6\lambda + 8 + 1 = 0\\{\lambda ^2} - 6\lambda + 9 = 0\end{array}\]

03

Find roots of characteristic equation

For the quadratic equation,\(a{x^2} + bx + c = 0\), the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\).

Thus, the solution of the characteristic equation\[{\lambda ^2} - 6\lambda + 9 = 0\]is obtained as follows:

\[\begin{array}{\lambda ^2} - 6\lambda + 9 = 0\\\lambda = \frac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( 9 \right)} }}{2}\\ = \frac{{6 \pm 0}}{2}\\ = 3,3\end{array}\]

The matrix \(A\) has single eigenvalue \(\lambda = 3\) with a multiplicity of 2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

2. \(\left[ {\begin{array}{*{20}{c}}5&3\\3&5\end{array}} \right]\)

Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)

Find the matrix for \(T\) relative to \(D\), and\(B\).

Let\(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\) and \(D = \left\{ {{{\bf{d}}_{\bf{1}}},{{\bf{d}}_{\bf{2}}}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{b}}_1}} \right) = 3{{\bf{d}}_1} - 5{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_2}} \right) = - {{\bf{d}}_1} + 6{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_3}} \right) = 4{{\bf{d}}_2}\)

Find the matrix for \(T\) relative to \(B\), and\(D\).

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

Define\(T:{{\rm P}_3} \to {\mathbb{R}^4}\)by\(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\).

  1. Show that \(T\) is a linear transformation.
  2. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2},{t^3}} \right\}\)for \({{\rm P}_3}\)and the standard basis for \({\mathbb{R}^4}\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free