Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

12. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{4}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{4}}\end{array}} \right)\)

Short Answer

Expert verified

The matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem:An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right)\). Since from the given matrix eigenvalues of the matrix are \(2\) and \(8\). Since the eigenvalues are distinct, the matrix is diagonalizable.

03

Find the eigenvalues and eigenvectors

As the sum of all the eigenvalues of\(A\)is equal to the sum of the diagonal entries of\(A\), we can find the third eigenvalue:

\(\begin{array}{c}2 + 8 + x = 4 + 4 + 4\\x = 12 - 10\\x = 2\end{array}\)

So, the eigenvalues are\(2,2,8\).

Find eigenvectors.

Write the matrix form for finding the eigenvector for\(\lambda = 2\).

\(\begin{array}{c}A - 2I = 0\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&1&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}2&2&2\\2&2&2\\2&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)

Write the Row-reduced augmented matrix.

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}2&2&2&0\\2&2&2&0\\2&2&2&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&2&2&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_3} = {R_3} - {R_1}\\{R_2} = {R_2} - {R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&1&1&0\\0&0&0&0\\0&0&0&0\end{array}} \right)\;\left\{ {{R_1} = \frac{{{R_1}}}{2}} \right\}\end{array}\)

Therefore, the parametric form of the solution is shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - {x_2} - {x_3}}\\{{x_2}}\\{{x_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - {x_2}}\\{{x_2}}\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - {x_3}}\\0\\{{x_3}}\end{array}} \right)\\ = {x_2}\left( {\begin{array}{*{20}{c}}{ - 1}\\1\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{ - 1}\\0\\1\end{array}} \right)\end{array}\)

Therefore, the eigenvector for \(\lambda = 2\)are\(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\1\end{array}\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}\begin{array}{l} - 1\\0\end{array}\\1\end{array}} \right)} \right\}\).

Write the matrix form for finding the Eigenvector for\(\lambda = 8\).

\(\begin{array}{c}A - 8I = 0\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - 8\left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}4&2&2\\2&4&2\\2&2&4\end{array}} \right) - \left( {\begin{array}{*{20}{c}}8&0&0\\0&8&0\\0&1&8\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{ - 4}&2&2\\2&{ - 4}&2\\2&2&{ - 4}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\end{array}} \right)\end{array}\)

Write the Row-reduced Augmented matrix.

\(\begin{array}{c}M = \left( {\begin{array}{*{20}{c}}{ - 4}&2&2&0\\2&{ - 4}&2&0\\2&2&{ - 4}&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&{ - \frac{1}{2}}&{ - \frac{1}{2}}&0\\2&{ - 4}&2&0\\2&2&{ - 4}&0\end{array}} \right)\;\left\{ {{R_1} = - \frac{1}{4}{R_1}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&{ - \frac{1}{2}}&{ - \frac{1}{2}}&0\\0&{ - 3}&3&0\\0&3&{ - 3}&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_3} = {R_3} - 2{R_1}\\{R_2} = {R_2} - 2{R_1}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&{ - \frac{1}{2}}&{ - \frac{1}{2}}&0\\0&{ - 3}&3&0\\0&0&0&0\end{array}} \right)\;\left\{ {{R_3} = {R_3} + {R_2}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}&0\\0&1&{ - 1}&0\\0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_2} = \frac{1}{6}{R_2}\\{R_1} = {R_1} - {R_2}\\{R_2} = - 2R2\end{array} \right\}\end{array}\)

Therefore, the parametric form of the solution is shown below:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{{x_3}}\\{{x_3}}\\{{x_3}}\end{array}} \right)\\ = {x_3}\left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\end{array}\)

Therefore, the eigenvector for \(\lambda = 8\)are\(\left\{ {{{\rm{v}}_3}} \right\} = \left( {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right)\).

The determinant is shown below:

\(\begin{array}{c}{\rm{Det}}\left( {{v_1},{v_2},{v_3}} \right) = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\\ = - 1\end{array}\)

04

Find the matrix \(P\) and \(D\)

The matrix\(P\)is formed by eigenvectors

\(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\)

The matrix\(D\)is formed by eigenvalues.

\(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\)

05

Find diagonalizes form of a matrix \(A\)

As the diagonal form of the matrix\(A\)is\(A = PD{P^{ - 1}}\).

Where\(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\)and\(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\).

Thus, the matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}{ - 1}&{ - 1}&1\\0&1&1\\1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}2&0&0\\0&2&0\\0&0&8\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

19.\[A{\bf{=}}\left[{\begin{array}{*{20}{c}}{{\bf{10}}}&{\bf{7}}&{\bf{8}}&{\bf{7}}\\{\bf{7}}&{\bf{5}}&{\bf{6}}&{\bf{5}}\\{\bf{8}}&{\bf{6}}&{{\bf{10}}}&{\bf{9}}\\{\bf{7}}&{\bf{5}}&{\bf{9}}&{{\bf{10}}}\end{array}} \right]\]

Let\(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\) and \(D = \left\{ {{{\bf{d}}_{\bf{1}}},{{\bf{d}}_{\bf{2}}}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{b}}_1}} \right) = 3{{\bf{d}}_1} - 5{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_2}} \right) = - {{\bf{d}}_1} + 6{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_3}} \right) = 4{{\bf{d}}_2}\)

Find the matrix for \(T\) relative to \(B\), and\(D\).

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.6}&{.3}\\{.4}&{.7}\end{array}} \right)\), \({v_1} = \left( {\begin{array}{*{20}{c}}{3/7}\\{4/7}\end{array}} \right)\), \({x_0} = \left( {\begin{array}{*{20}{c}}{.5}\\{.5}\end{array}} \right)\). (Note: \(A\) is the stochastic matrix studied in Example 5 of Section 4.9.)

  1. Find a basic for \({\mathbb{R}^2}\) consisting of \({{\rm{v}}_1}\) and anther eigenvector \({{\rm{v}}_2}\) of \(A\).
  2. Verify that \({{\rm{x}}_0}\) may be written in the form \({{\rm{x}}_0} = {{\rm{v}}_1} + c{{\rm{v}}_2}\).
  3. For \(k = 1,2, \ldots \), define \({x_k} = {A^k}{x_0}\). Compute \({x_1}\) and \({x_2}\), and write a formula for \({x_k}\). Then show that \({{\bf{x}}_k} \to {{\bf{v}}_1}\) as \(k\) increases.

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

A particle moving in a planar force field has a position vector .\(x\). that satisfies \(x' = Ax\). The \(2 \times 2\) matrix \(A\) has eigenvalues 4 and 2, with corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{{20}{c}}{ - 3}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{{20}{c}}{ - 1}\\1\end{aligned}} \right)\). Find the position of the particle at a time \(t\), assuming that \(x\left( 0 \right) = \left( {\begin{aligned}{{20}{c}}{ - 6}\\1\end{aligned}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free