Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

19. \(\left( {\begin{array}{*{20}{c}}{\bf{5}}&{{\bf{ - 3}}}&{\bf{0}}&{\bf{9}}\\{\bf{0}}&{\bf{3}}&{\bf{1}}&{{\bf{ - 2}}}\\{\bf{0}}&{\bf{0}}&{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{2}}\end{array}} \right)\)

Short Answer

Expert verified

The matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}1&{\frac{3}{2}}&{ - 1}&{ - 1}\\0&1&{ - 1}&2\\0&0&1&0\\0&0&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}5&0&0&0\\0&3&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}5&{ - 3}&0&9\\0&3&1&{ - 2}\\0&0&2&0\\0&0&0&2\end{array}} \right)\). Since it is given the eigenvalues of the matrix are \(5\), \(3\), \(2\) and \(2\).

03

Find the eigenvector for \(\lambda   = {\bf{5}}\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}\left( {A - 5I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}5&{ - 3}&0&9\\0&3&1&{ - 2}\\0&0&2&0\\0&0&0&2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}5&0&0&0\\0&5&0&0\\0&0&5&0\\0&0&0&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}0&{ - 3}&0&9\\0&{ - 2}&1&{ - 2}\\0&0&{ - 3}&0\\0&0&0&{ - 3}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

Therefore, the system of equations is shown below:

\(\begin{array}{c} - 3{x_2} + 9{x_4} = 0\\ - 2{x_2} + {x_3} - 2{x_4} = 0\\ - 3{x_3} = 0\\ - 3{x_4} = 0\end{array}\)

The general solution is,

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{{x_1}}\\0\\0\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right){x_1}\end{array}\).

Therefore, the eigenvector is \(\left\{ {{{\rm{v}}_1}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right)} \right\}\).

04

Find the Eigenvector for \(\lambda   = {\bf{3}}\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}\left( {A - 3I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}5&{ - 3}&0&9\\0&3&1&{ - 2}\\0&0&2&0\\0&0&0&2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}3&0&0&0\\0&3&0&0\\0&0&3&0\\0&0&0&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}2&{ - 3}&0&9\\0&0&1&{ - 2}\\0&0&{ - 1}&0\\0&0&0&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

Therefore, the system of equations is shown below:

\(\begin{array}{c} - 2{x_1} - 3{x_2} + 9{x_4} = 0\\{x_3} - 2{x_4} = 0\\ - {x_3} = 0\\ - {x_4} = 0\end{array}\)

The general solution is,

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{\frac{3}{2}{x_2}}\\{{x_2}}\\0\\0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{\frac{3}{2}}\\1\\0\\0\end{array}} \right){x_2}\end{array}\).

Therefore, the eigenvector is \(\left\{ {{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}{\frac{3}{2}}\\1\\0\\0\end{array}} \right)} \right\}\).

05

Find the Eigenvector for \(\lambda   = {\bf{2}}\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}\left( {A - 2I} \right){\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}5&{ - 3}&0&9\\0&3&1&{ - 2}\\0&0&2&0\\0&0&0&2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}2&0&0&0\\0&2&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}3&{ - 3}&0&9\\0&1&1&{ - 2}\\0&0&0&0\\0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

Therefore, the system of equations is shown below:

\(\begin{array}{c}3{x_1} - 3{x_2} + 9{x_4} = 0\\{x_2} + {x_3} - 2{x_4} = 0\end{array}\)

The general solution is,

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - {x_3} - {x_4}}\\{ - {x_3} + 2{x_4}}\\{{x_3}}\\{{x_4}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\1\\0\end{array}} \right){x_3} + \left( {\begin{array}{*{20}{c}}{ - 1}\\2\\0\\1\end{array}} \right){x_4}\end{array}\).

Therefore, the eigenvectors are \(\left\{ {{{\rm{v}}_3},{{\rm{v}}_4}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - 1}\\2\\0\\1\end{array}} \right)} \right\}\).

06

Find the matrix \(P\) and \(D\)

The matrix\(P\)is formed by eigenvectors

\(P = \left( {\begin{array}{*{20}{c}}1&{\frac{3}{2}}&{ - 1}&{ - 1}\\0&1&{ - 1}&2\\0&0&1&0\\0&0&0&1\end{array}} \right)\)

The matrix\(D\)is formed by eigenvalues.

\(D = \left( {\begin{array}{*{20}{c}}5&0&0&0\\0&3&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\)

Thus, the matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}1&{\frac{3}{2}}&{ - 1}&{ - 1}\\0&1&{ - 1}&2\\0&0&1&0\\0&0&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}5&0&0&0\\0&3&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

17. \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\- 5&1&0&0&0\\3&8&0&0&0\\0&- 7&2&1&0\\- 4&1&9&- 2&3\end{array}} \right]\)

M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

19.\[A{\bf{=}}\left[{\begin{array}{*{20}{c}}{{\bf{10}}}&{\bf{7}}&{\bf{8}}&{\bf{7}}\\{\bf{7}}&{\bf{5}}&{\bf{6}}&{\bf{5}}\\{\bf{8}}&{\bf{6}}&{{\bf{10}}}&{\bf{9}}\\{\bf{7}}&{\bf{5}}&{\bf{9}}&{{\bf{10}}}\end{array}} \right]\]

Mark each statement as True or False. Justify each answer.

a. If \(A\) is invertible and 1 is an eigenvalue for \(A\), then \(1\) is also an eigenvalue of \({A^{ - 1}}\)

b. If \(A\) is row equivalent to the identity matrix \(I\), then \(A\) is diagonalizable.

c. If \(A\) contains a row or column of zeros, then 0 is an eigenvalue of \(A\)

d. Each eigenvalue of \(A\) is also an eigenvalue of \({A^2}\).

e. Each eigenvector of \(A\) is also an eigenvector of \({A^2}\)

f. Each eigenvector of an invertible matrix \(A\) is also an eigenvector of \({A^{ - 1}}\)

g. Eigenvalues must be nonzero scalars.

h. Eigenvectors must be nonzero vectors.

i. Two eigenvectors corresponding to the same eigenvalue are always linearly dependent.

j. Similar matrices always have exactly the same eigenvalues.

k. Similar matrices always have exactly the same eigenvectors.

I. The sum of two eigenvectors of a matrix \(A\) is also an eigenvector of \(A\).

m. The eigenvalues of an upper triangular matrix \(A\) are exactly the nonzero entries on the diagonal of \(A\).

n. The matrices \(A\) and \({A^T}\) have the same eigenvalues, counting multiplicities.

o. If a \(5 \times 5\) matrix \(A\) has fewer than 5 distinct eigenvalues, then \(A\) is not diagonalizable.

p. There exists a \(2 \times 2\) matrix that has no eigenvectors in \({A^2}\)

q. If \(A\) is diagonalizable, then the columns of \(A\) are linearly independent.

r. A nonzero vector cannot correspond to two different eigenvalues of \(A\).

s. A (square) matrix \(A\) is invertible if and only if there is a coordinate system in which the transformation \({\bf{x}} \mapsto A{\bf{x}}\) is represented by a diagonal matrix.

t. If each vector \({{\bf{e}}_j}\) in the standard basis for \({A^n}\) is an eigenvector of \(A\), then \(A\) is a diagonal matrix.

u. If \(A\) is similar to a diagonalizable matrix \(B\), then \(A\) is also diagonalizable.

v. If \(A\) and \(B\) are invertible \(n \times n\) matrices, then \(AB\)is similar to \ (BA\ )

w. An \(n \times n\) matrix with \(n\) linearly independent eigenvectors is invertible.

x. If \(A\) is an \(n \times n\) diagonalizable matrix, then each vector in \({A^n}\) can be written as a linear combination of eigenvectors of \(A\).

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

Question: Is \(\left( {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right)\) an eigenvector of\(\left){\begin{array}{*{20}{c}}3&6&7\\3&3&7\\5&6&5\end{array}} \right)\)? If so, find the eigenvalue.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free