Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

Short Answer

Expert verified

The required value is \({A^4} = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\)and \(D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\).

\[\begin{array}{P^{ - 1}} = \frac{1}{{5 \times 3 - 7 \times 2}}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \frac{1}{{15 - 14}}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \frac{1}{1}\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\end{array}\]

03

Find \({{\bf{4}}^{{\bf{th}}}}\)the power of the diagonal matrix

\[\begin{array}{l}D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\\{D^2} = \left( {\begin{array}{*{20}{c}}{{2^2}}&0\\0&{{1^2}}\end{array}} \right)\\{D^3} = \left( {\begin{array}{*{20}{c}}{{2^3}}&0\\0&{{1^3}}\end{array}} \right)\\{D^4} = \left( {\begin{array}{*{20}{c}}{{2^4}}&0\\0&{{1^4}}\end{array}} \right)\\{D^4} = \left( {\begin{array}{*{20}{c}}{16}&0\\0&1\end{array}} \right)\end{array}\]

04

Find \({A^{\bf{4}}}\)

Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\)and \(D = \left( {\begin{array}{*{20}{c}}2&0\\0&1\end{array}} \right)\).

As it is given that \(A = PD{P^{ - 1}}\)than by using the formula for \({n^{th}}\) power we get:

\[{A^n} = P{D^n}{P^{ - 1}}\].

Then we get:

\[\begin{array}{A^4} = P{D^4}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}5&7\\2&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}{16}&0\\0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{80}&7\\{32}&3\end{array}} \right)\left( {\begin{array}{*{20}{c}}3&{ - 7}\\{ - 2}&5\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\end{array}\]

Thus, \({A^4} = \left( {\begin{array}{*{20}{c}}{226}&{ - 525}\\{90}&{ - 209}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle moving in a planar force field has a position vector .\(x\). that satisfies \(x' = Ax\). The \(2 \times 2\) matrix \(A\) has eigenvalues 4 and 2, with corresponding eigenvectors \({v_1} = \left( {\begin{aligned}{{20}{c}}{ - 3}\\1\end{aligned}} \right)\) and \({v_2} = \left( {\begin{aligned}{{20}{c}}{ - 1}\\1\end{aligned}} \right)\). Find the position of the particle at a time \(t\), assuming that \(x\left( 0 \right) = \left( {\begin{aligned}{{20}{c}}{ - 6}\\1\end{aligned}} \right)\).

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

A common misconception is that if \(A\) has a strictly dominant eigenvalue, then, for any sufficiently large value of \(k\), the vector \({A^k}{\bf{x}}\) is approximately equal to an eigenvector of \(A\). For the three matrices below, study what happens to \({A^k}{\bf{x}}\) when \({\bf{x = }}\left( {{\bf{.5,}}{\bf{.5}}} \right)\), and try to draw general conclusions (for a \({\bf{2 \times 2}}\) matrix).

a. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{{\bf{.8}}}&{\bf{0}}\\{\bf{0}}&{{\bf{.2}}}\end{aligned}} \right)\) b. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{{\bf{.8}}}\end{aligned}} \right)\) c. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{8}}&{\bf{0}}\\{\bf{0}}&{\bf{2}}\end{aligned}} \right)\)

Show that if \({\bf{x}}\) is an eigenvector of the matrix product \(AB\) and \(B{\rm{x}} \ne 0\), then \(B{\rm{x}}\) is an eigenvector of\(BA\).

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

17. \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\- 5&1&0&0&0\\3&8&0&0&0\\0&- 7&2&1&0\\- 4&1&9&- 2&3\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free