Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

20. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{4}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{2}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{2}}\end{array}} \right)\)

Short Answer

Expert verified

The matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}0&2&0&0\\1&0&0&0\\0&0&1&0\\0&1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem: An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find eigenvalues of the matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\1&0&0&2\end{array}} \right)\). Since it is given the eigenvalues of the matrix are \(4\), \(4\), \(2\) and \(2\).

03

Find the eigenvector for \(\lambda   = 4\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}A - 4I = \left( {\begin{array}{*{20}{c}}0&0&0&0\\0&0&0&0\\0&0&{ - 2}&0\\1&0&0&{ - 2}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0&0&{ - 2}&0\\0&0&{ - 2}&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_1} \leftrightarrow {R_4}\\{R_2} \leftrightarrow {R_3}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&{ - 2}&0\\0&0&1&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\;\left\{ {{R_2} = - \frac{{{R_2}}}{2}} \right\}\end{array}\)

The general solution is,

\(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}0\\1\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\0\\0\\1\end{array}} \right)} \right\}\).

Therefore, the eigenvectors are \(\left\{ {{{\rm{v}}_1},{{\rm{v}}_2}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}0\\1\\0\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}2\\0\\0\\1\end{array}} \right)} \right\}\).

04

Find the Eigenvector for \(\lambda   = {\bf{2}}\)

Write the matrix form for finding the eigenvector.

\(\begin{array}{c}A - 2I = \left( {\begin{array}{*{20}{c}}2&0&0&0\\0&2&0&0\\0&0&0&0\\1&0&0&0\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&0&0&0\\1&0&0&0&0\end{array}} \right)\;\left\{ \begin{array}{l}{R_1} \to \frac{{{R_1}}}{2}\\{R_2} \to \frac{{{R_2}}}{2}\end{array} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0&0&0&0\\0&1&0&0&0\\0&0&0&0&0\\0&0&0&0&0\end{array}} \right)\;\left\{ {{R_4} = {R_4} - {R_1}} \right\}\end{array}\)

The general solution is,

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right){x_3} + \left( {\begin{array}{*{20}{c}}0\\0\\0\\1\end{array}} \right){x_4}\).

Therefore, the eigenvectors are \(\left\{ {{{\rm{v}}_3},{{\rm{v}}_4}} \right\} = \left\{ {\left( {\begin{array}{*{20}{c}}0\\0\\1\\0\end{array}} \right),\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\end{array}} \right)} \right\}\).

05

Find the matrix \(P\) and \(D\)

The matrix\(P\)is formed by eigenvectors

\(P = \left( {\begin{array}{*{20}{c}}0&2&0&0\\1&0&0&0\\0&0&1&0\\0&1&0&1\end{array}} \right)\)

The matrix\(D\)is formed by eigenvalues.

\(D = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\)

Thus, the matrix \(A\) is diagonalizable with \(P = \left( {\begin{array}{*{20}{c}}0&2&0&0\\1&0&0&0\\0&0&1&0\\0&1&0&1\end{array}} \right)\) and \(D = \left( {\begin{array}{*{20}{c}}4&0&0&0\\0&4&0&0\\0&0&2&0\\0&0&0&2\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)

Suppose \(A\) is diagonalizable and \(p\left( t \right)\) is the characteristic polynomial of \(A\). Define \(p\left( A \right)\) as in Exercise 5, and show that \(p\left( A \right)\) is the zero matrix. This fact, which is also true for any square matrix, is called the Cayley-Hamilton theorem.

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. If \(A\) is \(3 \times 3\), with columns \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\), then \(\det A\) equals the volume of the parallelepiped determined by \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\).
  2. \(\det {A^T} = \left( { - 1} \right)\det A\).
  3. The multiplicity of a root \(r\) of the characteristic equation of \(A\) is called the algebraic multiplicity of \(r\) as an eigenvalue of \(A\).
  4. A row replacement operation on \(A\) does not change the eigenvalues.

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free