Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

Short Answer

Expert verified

The required value is \({A^4} = \frac{1}{{16}}\left( {\begin{array}{*{20}{c}}{151}&{90}\\{ - 225}&{ - 134}\end{array}} \right)\).

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem:An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the matrix \(P = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\)and \(D = \left( {\begin{array}{*{20}{c}}1&0\\0&{\frac{1}{2}}\end{array}} \right)\).

As it is given that \(A = PD{P^{ - 1}}\)than by using the formula for \({n^{th}}\) power we get:

\[{A^n} = P{D^n}{P^{ - 1}}\].

Compute \({P^{ - 1}}\).

\[\begin{array}{P^{ - 1}} = \frac{1}{{2 \times 5 - \left( { - 3} \right) \times \left( { - 3} \right)}}\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \frac{1}{{10 - 9}}\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \frac{1}{1}\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\end{array}\]

03

Find \({A^{\bf{4}}}\)

\[\begin{array}{A^4} = P{D^4}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right){\left( {\begin{array}{*{20}{c}}1&0\\0&{\frac{1}{2}}\end{array}} \right)^4}\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{{\left( 1 \right)}^4}}&0\\0&{{{\left( {\frac{1}{2}} \right)}^4}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&{\frac{1}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{2 + 0}&{0 - \frac{3}{{16}}}\\{ - 3 + 0}&{0 + \frac{5}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&{ - \frac{3}{{16}}}\\{ - 3}&{\frac{5}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\end{array}\]

Further,

\[\begin{array}{c}{A^4} = \left( {\begin{array}{*{20}{c}}2&{ - \frac{3}{{16}}}\\{ - 3}&{\frac{5}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{10 - \frac{9}{{16}}}&{6 - \frac{6}{{16}}}\\{ - 15 + \frac{{15}}{{16}}}&{ - 9 + \frac{{10}}{{16}}}\end{array}} \right)\\ = \frac{1}{{16}}\left( {\begin{array}{*{20}{c}}{151}&{90}\\{ - 225}&{ - 134}\end{array}} \right)\end{array}\]

Thus, \({A^4} = \frac{1}{{16}}\left( {\begin{array}{*{20}{c}}{151}&{90}\\{ - 225}&{ - 134}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Define\(T:{{\rm P}_3} \to {\mathbb{R}^4}\)by\(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\).

  1. Show that \(T\) is a linear transformation.
  2. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2},{t^3}} \right\}\)for \({{\rm P}_3}\)and the standard basis for \({\mathbb{R}^4}\).

Question 20: Use a property of determinants to show that \(A\) and \({A^T}\) have the same characteristic polynomial.

Question 18: It can be shown that the algebraic multiplicity of an eigenvalue \(\lambda \) is always greater than or equal to the dimension of the eigenspace corresponding to \(\lambda \). Find \(h\) in the matrix \(A\) below such that the eigenspace for \(\lambda = 5\) is two-dimensional:

\[A = \left[ {\begin{array}{*{20}{c}}5&{ - 2}&6&{ - 1}\\0&3&h&0\\0&0&5&4\\0&0&0&1\end{array}} \right]\]

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Suppose \(A = PD{P^{ - 1}}\), where \(P\) is \(2 \times 2\) and \(D = \left( {\begin{array}{*{20}{l}}2&0\\0&7\end{array}} \right)\)

a. Let \(B = 5I - 3A + {A^2}\). Show that \(B\) is diagonalizable by finding a suitable factorization of \(B\).

b. Given \(p\left( t \right)\) and \(p\left( A \right)\) as in Exercise 5 , show that \(p\left( A \right)\) is diagonalizable.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free