\[\begin{array}{A^4} = P{D^4}{P^{ - 1}}\\ = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right){\left( {\begin{array}{*{20}{c}}1&0\\0&{\frac{1}{2}}\end{array}} \right)^4}\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{{\left( 1 \right)}^4}}&0\\0&{{{\left( {\frac{1}{2}} \right)}^4}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&{\frac{1}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{2 + 0}&{0 - \frac{3}{{16}}}\\{ - 3 + 0}&{0 + \frac{5}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}2&{ - \frac{3}{{16}}}\\{ - 3}&{\frac{5}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\end{array}\]
Further,
\[\begin{array}{c}{A^4} = \left( {\begin{array}{*{20}{c}}2&{ - \frac{3}{{16}}}\\{ - 3}&{\frac{5}{{16}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&3\\3&2\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{10 - \frac{9}{{16}}}&{6 - \frac{6}{{16}}}\\{ - 15 + \frac{{15}}{{16}}}&{ - 9 + \frac{{10}}{{16}}}\end{array}} \right)\\ = \frac{1}{{16}}\left( {\begin{array}{*{20}{c}}{151}&{90}\\{ - 225}&{ - 134}\end{array}} \right)\end{array}\]
Thus, \({A^4} = \frac{1}{{16}}\left( {\begin{array}{*{20}{c}}{151}&{90}\\{ - 225}&{ - 134}\end{array}} \right)\).