Question: With A and D as in Example 2, find an invertible \({P_{\bf{2}}}\) unequal to the P in Example 2, such that \(A = {P_{\bf{2}}}DP_{\bf{2}}^{ - {\bf{1}}}\).

Short Answer

Expert verified

The matrix \({P_2}\) is \(\left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 1}&2\end{array}} \right]\).

Step by step solution

01

Write the given information from example 2

The matrices from example 2 are,

\[A = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right], D = \left[ {\begin{array}{*{20}{c}}5&0\\0&3\end{array}} \right]\]

02

Find the row reduced form of a matrix \(A - {\bf{3}}I\)

Find the matrix \(A - 3I\).

\[\begin{array}{c}A - 3I = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}3&0\\0&3\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}4&2\\{ - 4}&{ - 2}\end{array}} \right]\end{array}\]

The row-reduced form of the matrix is:

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{A - 3I}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&0\\{ - 4}&{ - 2}&0\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}4&2&0\\0&0&0\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} + {R_1}} \right)\\ = \left[ {\begin{array}{*{20}{c}}2&1&0\\0&0&0\end{array}} \right]\end{array}\]

The equations are:

\[2{x_1} + {x_2} = 0\]

\[{x_2} = - 2{x_1}\]

The general solution is:

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - t}\\{2t}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]t\end{array}\]

So, for the eigenvalues \(\lambda = 3\), the eigenvector is \(\left[ {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right]\).

03

Find the row reduced form of a matrix \(A - {\bf{5}}I\)

\[\begin{array}{c}A - 5I = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right] - 5\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}5&0\\0&5\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}2&2\\{ - 4}&{ - 4}\end{array}} \right]\end{array}\]

The row reduced form of a matrix is:

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{A - 5I}&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2&2&0\\{ - 4}&{ - 4}&0\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}2&2&0\\0&0&0\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} + 2{R_1}} \right)\\ = \left[ {\begin{array}{*{20}{c}}1&1&0\\0&0&0\end{array}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_1} \to \frac{{{R_1}}}{2}} \right)\end{array}\]

The equations are:

\[\begin{array}{c}{x_1} + {x_2} = 0\\{x_2} = - {x_1}\end{array}\]

The general solution is:

\[\begin{array}{c}\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}t\\{ - t}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1\\{ - 1}\end{array}} \right]t\end{array}\]

So, for the eigenvalues \(\lambda = 5\), the eigenvector is \(\left[ {\begin{array}{*{20}{c}}1\\{ - 1}\end{array}} \right]\).

04

Find the matrix \({P_{\bf{2}}}\)

The matrix \({P_2}\) is formed using eigenvectors.

\[{P_2} = \left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 1}&2\end{array}} \right]\]

The inverse of the matrix \({P_2}\) can be calculated as follows:

\[\begin{array}{c}P_2^{ - 1} = \frac{1}{{2\left( 1 \right) - \left( { - 1} \right)\left( { - 1} \right)}}\left[ {\begin{array}{*{20}{c}}2&1\\1&1\end{array}} \right]\\ = \frac{1}{{2 - 1}}\left[ {\begin{array}{*{20}{c}}2&1\\1&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}2&1\\1&1\end{array}} \right]\end{array}\]

05

Verify matrix \({P_{\bf{2}}}\) using diagonalization theorem

Find the value of \({P_2}DP_2^{ - 1}\).

\[\begin{array}{c}{P_2}DP_2^{ - 1} = \left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 1}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}5&0\\0&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2&1\\1&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 1}&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{10}&5\\3&3\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}7&2\\{ - 4}&1\end{array}} \right]\\ = A\end{array}\]

So, the matrix \({P_2}\) is \(\left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 1}&2\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the matrices Afind real closed formulas for the trajectoryx(t+1)=Ax(t)wherex(0)=[01]. Draw a rough sketchA=[1-31.2-2.6]

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

Suppose \({\bf{x}}\) is an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \).

a. Show that \(x\) is an eigenvector of \(5I - A\). What is the corresponding eigenvalue?

b. Show that \(x\) is an eigenvector of \(5I - 3A + {A^2}\). What is the corresponding eigenvalue?

Show that if \({\bf{x}}\) is an eigenvector of the matrix product \(AB\) and \(B{\rm{x}} \ne 0\), then \(B{\rm{x}}\) is an eigenvector of\(BA\).

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free