Chapter 5: Q5.3-31E (page 267)
Question: Construct a nonzero \({\bf{2}} \times {\bf{2}}\) matrix that is invertible but not diagonalizable.
Short Answer
The matrix A is \(\left[ {\begin{array}{*{20}{c}}3&2\\0&3\end{array}} \right]\).
Chapter 5: Q5.3-31E (page 267)
Question: Construct a nonzero \({\bf{2}} \times {\bf{2}}\) matrix that is invertible but not diagonalizable.
The matrix A is \(\left[ {\begin{array}{*{20}{c}}3&2\\0&3\end{array}} \right]\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute the quantities in Exercises 1-8 using the vectors
\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)
3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)
Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.
4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)
Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).
20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.
In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.
10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)
Define \(T:{{\rm P}_2} \to {\mathbb{R}^3}\) by \(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 0 \right)}\\{{\bf{p}}\left( 1 \right)}\end{aligned}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.