Question: Construct a nonzero \({\bf{2}} \times {\bf{2}}\) matrix that is invertible but not diagonalizable.

Short Answer

Expert verified

The matrix A is \(\left[ {\begin{array}{*{20}{c}}3&2\\0&3\end{array}} \right]\).

Step by step solution

01

Write the matrix which is invertible but not diagonalizable

Let the matrix of the order \(2 \times 2\) be:

\(A = \left[ {\begin{array}{*{20}{c}}5&2\\0&4\end{array}} \right]\)

The matrix A is triangular; therefore, the diagonal elements are the eigenvalues. So, the eigenvalues of A are 5 and 4

As the eigenvalues are distinct, therefore A is diagonalizable.

Consider a matrix with the same eigenvalues:

\(A = \left[ {\begin{array}{*{20}{c}}3&2\\0&3\end{array}} \right]\)

02

Apply characteristic equation for \(A\)

Apply the characteristic equation:

\(\begin{array}{c}\left( {A - 3I} \right){\bf{x}} = 0\\\left( {\left[ {\begin{array}{*{20}{c}}3&2\\0&3\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}3&0\\0&3\end{array}} \right]} \right)\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\end{array}} \right]\\\left[ {\begin{array}{*{20}{c}}0&2\\0&0\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\end{array}} \right]\end{array}\)

So, the eigenvector of the matrix is:

\(\begin{array}{c}{\bf{v}} = \left[ {\begin{array}{*{20}{c}}t\\0\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]t\end{array}\)

Since the eigenvector is linearly dependent, therefore matrix A is invertible but not diagonalizable.

So, the matrix A is \(\left[ {\begin{array}{*{20}{c}}3&2\\0&3\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute the quantities in Exercises 1-8 using the vectors

\({\mathop{\rm u}\nolimits} = \left( {\begin{array}{*{20}{c}}{ - 1}\\2\end{array}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{array}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{array}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\\3\end{array}} \right)\)

3. \(\frac{1}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{\mathop{\rm w}\nolimits} \)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

20. Let \(p\left( t \right){\bf{ = }}\left( {t{\bf{ - 2}}} \right)\left( {t{\bf{ - 3}}} \right)\left( {t{\bf{ - 4}}} \right){\bf{ = - 24 + 26}}t{\bf{ - 9}}{t^{\bf{2}}}{\bf{ + }}{t^{\bf{3}}}\). Write the companion matrix for \(p\left( t \right)\), and use techniques from chapter \({\bf{3}}\) to find the characteristic polynomial.

In Exercises 9–16, find a basis for the eigenspace corresponding to each listed eigenvalue.

10. \(A = \left( {\begin{array}{*{20}{c}}{10}&{ - 9}\\4&{ - 2}\end{array}} \right)\), \(\lambda = 4\)

Define \(T:{{\rm P}_2} \to {\mathbb{R}^3}\) by \(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 0 \right)}\\{{\bf{p}}\left( 1 \right)}\end{aligned}} \right)\).

  1. Find the image under\(T\)of\({\bf{p}}\left( t \right) = 5 + 3t\).
  2. Show that \(T\) is a linear transformation.
  3. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2}} \right\}\)for \({{\rm P}_2}\)and the standard basis for \({\mathbb{R}^3}\).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free