Question: Diagonalize the matrices in Exercises 33-36. Use your matrix program’s eigenvalue command to find the eigenvalues, and then compute bases for the eigenspaces as in section 5.1.

36. \(\left[ {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{4}}&{\bf{2}}&{\bf{3}}&{ - {\bf{2}}}\\{\bf{0}}&{\bf{1}}&{ - {\bf{2}}}&{ - {\bf{2}}}&{\bf{2}}\\{\bf{6}}&{{\bf{12}}}&{{\bf{11}}}&{\bf{2}}&{ - {\bf{4}}}\\{\bf{9}}&{{\bf{20}}}&{{\bf{10}}}&{{\bf{10}}}&{ - {\bf{6}}}\\{{\bf{15}}}&{{\bf{28}}}&{{\bf{14}}}&{\bf{5}}&{ - {\bf{3}}}\end{array}} \right]\)

Short Answer

Expert verified

The diagonal form of the given matrix is \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\0&3&0&0&0\\0&0&5&0&0\\0&0&0&5&0\\0&0&0&0&7\end{array}} \right]\).

Step by step solution

01

Find the eigenvalues

Let,

\[A = \left[ {\begin{array}{*{20}{c}}4&4&2&3&{ - 2}\\0&1&{ - 2}&{ - 2}&2\\6&{12}&{11}&2&{ - 4}\\9&{20}&{10}&{10}&{ - 6}\\{15}&{28}&{14}&5&{ - 3}\end{array}} \right]\]

Use the following code in MATLAB to find the eigenvalues of the matrix.

\[\begin{array}{l} > > A = \left[ \begin{array}{c}\begin{array}{*{20}{c}}4&4&2&3&{ - 2;\,}\end{array}\,\begin{array}{*{20}{c}}0&1&{ - 2}&{ - 2}&{ - 2;\,}\end{array}\,\begin{array}{*{20}{c}}6&{12}&{11}&2&{ - 4;\,\,}\end{array}\,\\\begin{array}{*{20}{c}}9&{20}&{10}&{10}&{ - 6;\,}\end{array}\begin{array}{*{20}{c}}{15}&{28}&{14}&5&{ - 3}\end{array}\end{array} \right];\\ > > {\rm{ev}} = eigs\left( A \right);\end{array}\]

So, the eigenvalues of A are:

\(ev = \left( {3,5,7,5,3} \right)\)

02

Find eigenvectors of A

Find the eigenvalues of A using the following MATLAB code:

\({\rm{ > > nulbasis}}\left( {A - {\rm{ev}}\left( 1 \right) * {\rm{eye}}\left( 5 \right)} \right);\)

So, the eigenvector for \(\lambda = 3\) is:

\({{\bf{v}}_1} = \left[ {\begin{array}{*{20}{c}}{2.0000}\\{ - 1.5000}\\{0.5000}\\{1.0000}\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 1.0000}\\{0.5000}\\{0.5000}\\0\\{1.0000}\end{array}} \right]\)

The basis of the eigenspace of \(\lambda = 3\) is \(\left[ {\begin{array}{*{20}{c}}4\\{ - 3}\\1\\2\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 2}\\1\\1\\0\\2\end{array}} \right]\).

\({\rm{ > > nulbasis}}\left( {A - {\rm{ev}}\left( 2 \right) * {\rm{eye}}\left( 5 \right)} \right);\)

So, the eigenvector for \(\lambda = 5\) is:

\({{\bf{v}}_{\bf{2}}} = \left[ {\begin{array}{*{20}{c}}0\\{ - 0.5000}\\{1.0000}\\0\\0\end{array}} \right],\,\,\left[ {\begin{array}{*{20}{c}}{ - 1.0000}\\{1.0000}\\0\\{ - 1.0000}\\{1.0000}\end{array}} \right]\)

The basis of the eigenspace of \(\lambda = 5\) is \(\left[ {\begin{array}{*{20}{c}}0\\{ - 1}\\2\\0\\0\end{array}} \right],\,\left[ {\begin{array}{*{20}{c}}{ - 1}\\1\\0\\{ - 1}\\1\end{array}} \right]\).

\({\rm{ > > nulbasis}}\left( {A - {\rm{ev}}\left( 3 \right) * {\rm{eye}}\left( 5 \right)} \right);\)

So, the eigenvector for \(\lambda = 7\) is:

\({{\bf{v}}_{\bf{3}}} = \left[ {\begin{array}{*{20}{c}}{0.3300}\\{0.0000}\\{0.0000}\\{1.0000}\\{1.0000}\end{array}} \right]\)

The basis of the eigenspace of \(\lambda = 3\) is \(\left[ {\begin{array}{*{20}{c}}1\\0\\0\\3\\4\end{array}} \right]\).

03

Write the matrix invertible matrix P and its diagonalized form

The invertible matrix P can be written as,

\(P = \left[ {\begin{array}{*{20}{c}}4&{ - 2}&0&{ - 1}&1\\{ - 3}&1&{ - 1}&1&0\\1&1&2&0&0\\2&0&0&{ - 1}&3\\0&2&0&1&3\end{array}} \right]\)

The diagonalized form can be written as,

\(D = \left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\0&3&0&0&0\\0&0&5&0&0\\0&0&0&5&0\\0&0&0&0&7\end{array}} \right]\)

So, the diagonal form of the given matrix is \(\left[ {\begin{array}{*{20}{c}}3&0&0&0&0\\0&3&0&0&0\\0&0&5&0&0\\0&0&0&5&0\\0&0&0&0&7\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

20. \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{3}}&{\bf{2}}\\{\bf{2}}&{{\bf{12}}}&{{\bf{13}}}&{{\bf{11}}}\\{{\bf{ - 2}}}&{\bf{3}}&{\bf{0}}&{\bf{2}}\\{\bf{4}}&{\bf{5}}&{\bf{7}}&{\bf{2}}\end{array}} \right]\]

Question 19: Let \(A\) be an \(n \times n\) matrix, and suppose A has \(n\) real eigenvalues, \({\lambda _1},...,{\lambda _n}\), repeated according to multiplicities, so that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) . Explain why \(\det A\) is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

6. \(\left[ {\begin{array}{*{20}{c}}3&- 4\\4&8\end{array}} \right]\)

Question: Is \(\left( {\begin{array}{*{20}{c}}{ - 1 + \sqrt 2 }\\1\end{array}} \right)\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}2&1\\1&4\end{array}} \right)\)? If so, find the eigenvalue.

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free