Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

Short Answer

Expert verified

As the matrix product \(AP\) and \(PD\) are same, that is, the matrix \(A\) is diagonalizable.

Step by step solution

01

Write the Diagonalization Theorem

The Diagonalization Theorem:An \(n \times n\) matrix \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent eigenvectors. As \(A = PD{P^{ - 1}}\) which has \(D\) a diagonal matrix if and only if the columns of \(P\) are \(n\) linearly independent eigenvectors of \(A\).

02

Find the inverse of the invertible matrix

Consider the given matrix \(A = \left( {\begin{array}{*{20}{c}}1&0\\6&{ - 1}\end{array}} \right)\). We need to diagonalize the given matrix if possible.

As the given matrix is an upper triangular matrix. Therefore, the eigenvalues of\(A\)are its diagonal values.

The eigenvalues are\({\lambda _1} = 1\)and\({\lambda _2} = - 1\).

Thus, the diagonal matrix is \(D = \left( {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right)\).

03

Find Eigenvectors

Eigenvectors for \({\lambda _1} = 1\),

\[\begin{array}{c}A{\bf{x}} = \lambda {\bf{x}}\\A{\bf{x}} = {\bf{x}}\\\left( {A - I} \right){\bf{x}} = 0\\\left( {\left( {\begin{array}{*{20}{c}}1&0\\6&{ - 1}\end{array}} \right) - \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}0&0\\6&{ - 2}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\end{array}\]

Assume \({x_2} = t\)then we get:

\[\begin{array}{l}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}t\\{3t}\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1\\3\end{array}} \right)t\end{array}\]

Eigenvectors for \({\lambda _1} = - 1\),

\[\begin{array}{c}A{\bf{x}} = \lambda {\bf{x}}\\A{\bf{x}} = {\bf{x}}\\\left( {A - I} \right){\bf{x}} = 0\\\left( {\left( {\begin{array}{*{20}{c}}1&0\\6&{ - 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}2&0\\6&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\end{array}} \right)\end{array}\]

Assume \({x_2} = t\)then we get:

\[\begin{array}{l}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\t\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\1\end{array}} \right)t\end{array}\]

04

Find the matrix \(P\)

\[\begin{array}{c}P = \left\{ {{v_1},{v_2}} \right\}\\ = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\end{array}\]

05

Find the matrix \({P^{ - {\bf{1}}}}\)

\[\begin{array}{l}{P^{ - 1}} = \frac{1}{{1\left( 1 \right) - 0}}\left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&3\end{array}} \right)\\{P^{ - 1}} = \left( {\begin{array}{*{20}{c}}1&0\\{ - 3}&3\end{array}} \right)\end{array}\]

06

Find the matrix product \(AP\)

\[\begin{array}{c}AP = \left( {\begin{array}{*{20}{c}}1&0\\6&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right)\end{array}\]

07

Find the matrix product \(PD\)

\[\begin{array}{c}PD = \left( {\begin{array}{*{20}{c}}1&0\\3&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right)\end{array}\]

Thus, as matrix product \(AP\) and \(PD\) are same, that is, the matrix \(A\) is diagonalizable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)

Find the matrix for \(T\) relative to \(D\), and\(B\).

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. The determinant of \(A\) is the product of the diagonal entries in \(A\).
  2. An elementary row operation on \(A\) does not change the determinant.
  3. \(\left( {\det A} \right)\left( {\det B} \right) = \det AB\)
  4. If \(\lambda + 5\) is a factor of the characteristic polynomial of \(A\), then 5 is an eigenvalue of \(A\).

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

14. \(\left[ {\begin{array}{*{20}{c}}5&- 2&3\\0&1&0\\6&7&- 2\end{array}} \right]\)

Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).

Question 19: Let \(A\) be an \(n \times n\) matrix, and suppose A has \(n\) real eigenvalues, \({\lambda _1},...,{\lambda _n}\), repeated according to multiplicities, so that \(\det \left( {A - \lambda I} \right) = \left( {{\lambda _1} - \lambda } \right)\left( {{\lambda _2} - \lambda } \right) \ldots \left( {{\lambda _n} - \lambda } \right)\) . Explain why \(\det A\) is the product of the n eigenvalues of A. (This result is true for any square matrix when complex eigenvalues are considered.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free