Define\(T:{{\rm P}_3} \to {\mathbb{R}^4}\)by\(T\left( {\bf{p}} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\).

  1. Show that \(T\) is a linear transformation.
  2. Find the matrix for \(T\) relative to the basis \(\left\{ {1,t,{t^2},{t^3}} \right\}\)for \({{\rm P}_3}\)and the standard basis for \({\mathbb{R}^4}\).

Short Answer

Expert verified
  1. It is verified that \(T\) is a linear transformation as both the properties of the transformation are satisfied.
  1. Matrix for \(T\) is relative to \(\left\{ {1,t,{t^2},{t^3}} \right\}\) for \({{\rm P}_3}\) and the standard basis for \({\mathbb{R}^4}\)is \(\left( {\begin{aligned}1&{}&{ - 3}&{}&9&{}&{ - 27}\\1&{}&{ - 1}&{}&1&{}&{ - 1}\\1&{}&1&{}&1&{}&1\\1&{}&3&{}&9&{}&{27}\end{aligned}} \right)\).

Step by step solution

01

Linear transformations

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be a transformation; this transformation is said to be a linear transformation if it satisfies the following two properties:

  1. \(T\left( {u + v} \right) = T\left( u \right) + T\left( v \right)\)
  2. \(T\left( {cu} \right) = cT\left( u \right)\)

Here,\(c\) is any scaler and \(u,v\) are vectors.

02

Check \(T\) is a linear transformation

(a)

Let there be two polynomials, \({\bf{p}}\left( t \right)\) and \({\bf{q}}\left( t \right)\) in \({{\rm P}_2}\), then their images will be \(T\left( {{\bf{p}}\left( t \right)} \right) = \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\) and \(T\left( {{\bf{q}}\left( t \right)} \right) = \left( {\begin{aligned}{{\bf{q}}\left( { - 3} \right)}\\{{\bf{q}}\left( { - 1} \right)}\\{{\bf{q}}\left( 1 \right)}\\{{\bf{q}}\left( 3 \right)}\end{aligned}} \right)\) , respectively.

Check for the first property.

\(\begin{aligned}{c}T\left( {{\bf{p}}\left( t \right) + {\bf{q}}\left( t \right)} \right) &= \left( {\begin{aligned}{\left( {{\bf{p}} + {\bf{q}}} \right)\left( { - 3} \right)}\\{\left( {{\bf{p}} + {\bf{q}}} \right)\left( { - 1} \right)}\\{\left( {{\bf{p}} + {\bf{q}}} \right)\left( 1 \right)}\\{\left( {{\bf{p}} + {\bf{q}}} \right)\left( 3 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right) + {\bf{q}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right) + {\bf{q}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right) + {\bf{q}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right) + {\bf{q}}\left( 3 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right) + \left( {\begin{aligned}{{\bf{q}}\left( { - 3} \right)}\\{{\bf{q}}\left( { - 1} \right)}\\{{\bf{q}}\left( 1 \right)}\\{{\bf{q}}\left( 3 \right)}\end{aligned}} \right)\\ &= T\left( {{\bf{p}}\left( t \right)} \right) + T\left( {{\bf{q}}\left( t \right)} \right)\end{aligned}\)

The first property is satisfied; check for the second property. Let \(c\) be any scaler.

\(\begin{aligned}T\left( {c \cdot {\bf{p}}\left( t \right)} \right) &= \left( {\begin{aligned}{\left( {c \cdot {\bf{p}}} \right)\left( { - 3} \right)}\\{\left( {c \cdot {\bf{p}}} \right)\left( { - 1} \right)}\\{\left( {c \cdot {\bf{p}}} \right)\left( 1 \right)}\\{\left( {c \cdot {\bf{p}}} \right)\left( 3 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{c \cdot \left( {{\bf{p}}\left( { - 3} \right)} \right)}\\{c \cdot \left( {{\bf{p}}\left( { - 1} \right)} \right)}\\{c \cdot \left( {{\bf{p}}\left( 1 \right)} \right)}\\{c \cdot \left( {{\bf{p}}\left( 3 \right)} \right)}\end{aligned}} \right)\\ &= c \cdot \left( {\begin{aligned}{{\bf{p}}\left( { - 3} \right)}\\{{\bf{p}}\left( { - 1} \right)}\\{{\bf{p}}\left( 1 \right)}\\{{\bf{p}}\left( 3 \right)}\end{aligned}} \right)\\ &= c \cdot T\left( {{\bf{p}}\left( t \right)} \right)\end{aligned}\)

As both the properties of a linear transformation are satisfied, \(T\) is a linear transformation.

03

The matrix for a linear transformation 

A matrix associated with a linear transformation. \(T\) for \(V\) and \(W\) is given by \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(V\) and \(W\) are \(n\) and \(m\)-dimensional subspaces respectively, and \(B\) and \(C\) are bases for \(V\), and\(W\).

04

Find the matrix for a linear transformation

(b)

Let \(B = \left\{ {1,t,{t^2},{t^3}} \right\}\) and the standard basis for \({\mathbb{R}^4}\) be \(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3},{{\bf{e}}_4}} \right\}\).

Write\(T\left( {{{\bf{b}}_1}} \right)\), \(T\left( {{{\bf{b}}_2}} \right)\), \(T\left( {{{\bf{b}}_3}} \right)\) and \(T\left( {{{\bf{b}}_4}} \right)\) for \(B = \left\{ {1,t,{t^2},{t^3}} \right\}\).

\(\begin{aligned}T\left( {{{\bf{b}}_1}} \right) &= T\left( 1 \right)\\ &= \left( {\begin{aligned}1\\1\\1\\1\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}T\left( {{{\bf{b}}_2}} \right) &= T\left( t \right)\\ &= \left( {\begin{aligned}{ - 3}\\{ - 1}\\1\\3\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}T\left( {{{\bf{b}}_3}} \right) &= T\left( {{t^2}} \right)\\ &= \left( {\begin{aligned}9\\1\\1\\9\end{aligned}} \right)\end{aligned}\)

\(\begin{aligned}T\left( {{{\bf{b}}_4}} \right) &= T\left( {{t^3}} \right)\\ &= \left( {\begin{aligned}{ - 27}\\{ - 1}\\1\\{27}\end{aligned}} \right)\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon }\), \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_\varepsilon }\), \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_\varepsilon }\) and \({\left( {T\left( {{{\bf{b}}_4}} \right)} \right)_\varepsilon }\).

\({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}1\\1\\1\\1\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_C} = \left( {\begin{aligned}{ - 3}\\{ - 1}\\1\\3\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_C} = \left( {\begin{aligned}9\\1\\1\\9\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_4}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}{ - 27}\\{ - 1}\\1\\{27}\end{aligned}} \right)\)

Form a matrix\(T\) for the obtained vectors by using the formula \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(n = 3\).

\(\begin{aligned}{\left( {T\left( {\bf{x}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_4}} \right)} \right)}_\varepsilon }}\end{aligned}} \right)\\ = \left( {\begin{aligned}1&{}&{ - 3}&{}&9&{}&{ - 27}\\1&{}&{ - 1}&{}&1&{}&{ - 1}\\1&{}&1&{}&1&{}&1\\1&{}&3&{}&9&{}&{27}\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}1&{}&{ - 3}&{}&9&{}&{ - 27}\\1&{}&{ - 1}&{}&1&{}&{ - 1}\\1&{}&1&{}&1&{}&1\\1&{}&3&{}&9&{}&{27}\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.

For the Matrices A find real closed formulas for the trajectory x(t+1)=Ax(t)where x(0)=[01]

A=[43-34]

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Let\(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3}} \right\}\) be the standard basis for \({\mathbb{R}^3}\),\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space \(V\) and\(T:{\mathbb{R}^3} \to V\) be a linear transformation with the property that

\(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_3} - {x_2}} \right){{\bf{b}}_1} - \left( {{x_1} - {x_3}} \right){{\bf{b}}_2} + \left( {{x_1} - {x_2}} \right){{\bf{b}}_3}\)

  1. Compute\(T\left( {{{\bf{e}}_1}} \right)\), \(T\left( {{{\bf{e}}_2}} \right)\) and \(T\left( {{{\bf{e}}_3}} \right)\).
  2. Compute \({\left( {T\left( {{{\bf{e}}_1}} \right)} \right)_B}\), \({\left( {T\left( {{{\bf{e}}_2}} \right)} \right)_B}\) and \({\left( {T\left( {{{\bf{e}}_3}} \right)} \right)_B}\).
  3. Find the matrix for \(T\) relative to \(\varepsilon \), and\(B\).

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

2. \(\left[ {\begin{array}{*{20}{c}}5&3\\3&5\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free