Chapter 5: Q5.4-22E (page 267)
Verify the statements in Exercises 19–24. The matrices are square.
22. If \(A\) is diagonalizable and B is similar to A, then \(B\) is also diagonalizable.
Short Answer
It is proved that \(B\) is diagonalizable
Chapter 5: Q5.4-22E (page 267)
Verify the statements in Exercises 19–24. The matrices are square.
22. If \(A\) is diagonalizable and B is similar to A, then \(B\) is also diagonalizable.
It is proved that \(B\) is diagonalizable
All the tools & learning materials you need for study success - in one app.
Get started for free
Question: Let \(A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\). Use formula (1) for a determinant (given before Example 2) to show that \(\det A = ad - bc\). Consider two cases: \(a \ne 0\) and \(a = 0\).
Question: Construct a random integer-valued \(4 \times 4\) matrix \(A\), and verify that \(A\) and \({A^T}\) have the same characteristic polynomial (the same eigenvalues with the same multiplicities). Do \(A\) and \({A^T}\) have the same eigenvectors? Make the same analysis of a \(5 \times 5\) matrix. Report the matrices and your conclusions.
Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).
2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)
Question: Let \(A = \left( {\begin{array}{*{20}{c}}{ - 6}&{28}&{21}\\4&{ - 15}&{ - 12}\\{ - 8}&a&{25}\end{array}} \right)\). For each value of \(a\) in the set \(\left\{ {32,31.9,31.8,32.1,32.2} \right\}\), compute the characteristic polynomial of \(A\) and the eigenvalues. In each case, create a graph of the characteristic polynomial \(p\left( t \right) = \det \left( {A - tI} \right)\) for \(0 \le t \le 3\). If possible, construct all graphs on one coordinate system. Describe how the graphs reveal the changes in the eigenvalues of \(a\) changes.
Compute the quantities in Exercises 1-8 using the vectors
\({\mathop{\rm u}\nolimits} = \left( {\begin{aligned}{*{20}{c}}{ - 1}\\2\end{aligned}} \right),{\rm{ }}{\mathop{\rm v}\nolimits} = \left( {\begin{aligned}{*{20}{c}}4\\6\end{aligned}} \right),{\rm{ }}{\mathop{\rm w}\nolimits} = \left( {\begin{aligned}{*{20}{c}}3\\{ - 1}\\{ - 5}\end{aligned}} \right),{\rm{ }}{\mathop{\rm x}\nolimits} = \left( {\begin{aligned}{*{20}{c}}6\\{ - 2}\\3\end{aligned}} \right)\)
2. \({\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} ,\,\,{\mathop{\rm and}\nolimits} \,\,\frac{{{\mathop{\rm x}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}{{{\mathop{\rm w}\nolimits} \cdot {\mathop{\rm w}\nolimits} }}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.