The trace of a square matrix \(A\) is the sum of the diagonal entries in A and is denoted by \({\mathop{\rm tr}\nolimits} A\). It can be verified that \({\mathop{\rm tr}\nolimits} \left( {FG} \right) = {\mathop{\rm tr}\nolimits} \left( {GF} \right)\) for any \(n \times n\) matrices Fand G. Show that if A and B are similar, then \({\mathop{\rm tr}\nolimits} A = {\mathop{\rm tr}\nolimits} B\).

Short Answer

Expert verified

It is proved that \({\mathop{\rm tr}\nolimits} A = {\mathop{\rm tr}\nolimits} B\).

Step by step solution

01

Show that if \(A\) and \(B\) are similar, then \({\mathop{\rm tr}\nolimits} A = {\mathop{\rm tr}\nolimits} B\) 

The Diagonalization Theoremstates that a \(n \times n\) matrix \(A\) isdiagonalizable such that if \(A\) contains \(n\) linearly independent eigenvectors.

In addition, \(A = PD{P^{ - 1}}\), where \(D\) is a diagonal matrix, such that if the columns of \(P\) are \(n\)linearly independent eigenvectorsof \(A\) . Accordingly, the eigenvalues of \(A\)are the diagonal entries of \(D\) which correspond to the eigenvectors in \(P\).

02

Prove the statement

When \(A = PB{P^{ - 1}}\) then

\(\begin{aligned}{}{\mathop{\rm tr}\nolimits} \left( A \right) &= {\mathop{\rm tr}\nolimits} \left( {\left( {PB} \right){P^{ - 1}}} \right)\\ &= {\mathop{\rm tr}\nolimits} \left( {{P^{ - 1}}\left( {PB} \right)} \right)\left( {{\mathop{\rm From}\nolimits} \,\,\,{\mathop{\rm the}\nolimits} \,\,{\mathop{\rm trace}\nolimits} \,\,{\mathop{\rm property}\nolimits} } \right)\\ &= {\mathop{\rm tr}\nolimits} \left( {{P^{ - 1}}PB} \right)\\ &= {\mathop{\rm tr}\nolimits} \left( {IB} \right)\\ &= {\mathop{\rm tr}\nolimits} \left( B \right)\end{aligned}\)

If \(B\) is diagonal, then the diagonal entries of \(B\) should be eigenvalues of A, according to the Diagonalization Theorem.

Therefore, \({\mathop{\rm tr}\nolimits} A = {\mathop{\rm tr}\nolimits} B = \left( {{\mathop{\rm sum}\nolimits} \,\,{\mathop{\rm of}\nolimits} \,\,{\mathop{\rm the}\nolimits} \,\,{\mathop{\rm eigenvalues}\nolimits} \,\,{\mathop{\rm of}\nolimits} \,\,A} \right)\) .

Thus, it is proved that \({\mathop{\rm tr}\nolimits} A = {\mathop{\rm tr}\nolimits} B\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M)The MATLAB command roots\(\left( p \right)\) computes the roots of the polynomial equation \(p\left( t \right) = {\bf{0}}\). Read a MATLAB manual, and then describe the basic idea behind the algorithm for the roots command.

[M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

20. \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{3}}&{\bf{2}}\\{\bf{2}}&{{\bf{12}}}&{{\bf{13}}}&{{\bf{11}}}\\{{\bf{ - 2}}}&{\bf{3}}&{\bf{0}}&{\bf{2}}\\{\bf{4}}&{\bf{5}}&{\bf{7}}&{\bf{2}}\end{array}} \right]\]

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)

Question: Show that if \(A\) and \(B\) are similar, then \(\det A = \det B\).

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free