Let\(D = \left\{ {{{\bf{d}}_1},{{\bf{d}}_2}} \right\}\) and \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\)

Find the matrix for \(T\) relative to \(D\), and\(B\).

Short Answer

Expert verified

The matrix for \(T\) relative to \(D\) and \(B\) is \(\left( {\begin{aligned}2&{}&{ - 4}\\{ - 3}&{}&5\end{aligned}} \right)\).

Step by step solution

01

The matrix for a linear transformation 

A matrix associated with a linear transformation \(T\) for \(V\) and \(W\) is given by \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(V\) and \(W\) are \(n\) and \(m\)-dimensional subspaces respectively, and \(B\), and\(C\) are the bases for \(V\), and \(W\).

02

Find the matrix for a linear transformation 

It is given that \(T\left( {{{\bf{d}}_1}} \right) = 2{{\bf{b}}_1} - 3{{\bf{b}}_2}\), and \(T\left( {{{\bf{d}}_2}} \right) = - 4{{\bf{b}}_1} + 5{{\bf{b}}_2}\).

Write them in the form of vectors as shown below:

\({\left( {T\left( {{{\bf{d}}_1}} \right)} \right)_B} = \left( {\begin{aligned}2\\{ - 3}\end{aligned}} \right)\)

\({\left( {T\left( {{{\bf{d}}_2}} \right)} \right)_B} = \left( {\begin{aligned}{ - 4}\\5\end{aligned}} \right)\)

Form a matrix \(T\) for the obtained vectors by using the formula \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(n = 2\).

\(\begin{aligned}{\left( {T\left( {\bf{x}} \right)} \right)_B} &= \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{d}}_1}} \right)} \right)}_B}}&{{{\left( {T\left( {{{\bf{d}}_2}} \right)} \right)}_B}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}2&{}&{ - 4}\\{ - 3}&{}&5\end{aligned}} \right)\end{aligned}\)

So, the requiredmatrix is \(\left( {\begin{aligned}2&{}&{ - 4}\\{ - 3}&{}&5\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.

  1. If \(A\) is \(3 \times 3\), with columns \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\), then \(\det A\) equals the volume of the parallelepiped determined by \({{\rm{a}}_1}\), \({{\rm{a}}_2}\), and \({{\rm{a}}_3}\).
  2. \(\det {A^T} = \left( { - 1} \right)\det A\).
  3. The multiplicity of a root \(r\) of the characteristic equation of \(A\) is called the algebraic multiplicity of \(r\) as an eigenvalue of \(A\).
  4. A row replacement operation on \(A\) does not change the eigenvalues.

Question: Let \(A = \left( {\begin{array}{*{20}{c}}{.6}&{.3}\\{.4}&{.7}\end{array}} \right)\), \({v_1} = \left( {\begin{array}{*{20}{c}}{3/7}\\{4/7}\end{array}} \right)\), \({x_0} = \left( {\begin{array}{*{20}{c}}{.5}\\{.5}\end{array}} \right)\). (Note: \(A\) is the stochastic matrix studied in Example 5 of Section 4.9.)

  1. Find a basic for \({\mathbb{R}^2}\) consisting of \({{\rm{v}}_1}\) and anther eigenvector \({{\rm{v}}_2}\) of \(A\).
  2. Verify that \({{\rm{x}}_0}\) may be written in the form \({{\rm{x}}_0} = {{\rm{v}}_1} + c{{\rm{v}}_2}\).
  3. For \(k = 1,2, \ldots \), define \({x_k} = {A^k}{x_0}\). Compute \({x_1}\) and \({x_2}\), and write a formula for \({x_k}\). Then show that \({{\bf{x}}_k} \to {{\bf{v}}_1}\) as \(k\) increases.

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b) the eigenvalue closest to zero. In each case, set \[{{\bf{x}}_{\bf{0}}}{\bf{ = }}\left( {{\bf{1,0,0,0}}} \right)\] and carry out approximations until the approximating sequence seems accurate to four decimal places. Include the approximate eigenvector.

19.\[A{\bf{=}}\left[{\begin{array}{*{20}{c}}{{\bf{10}}}&{\bf{7}}&{\bf{8}}&{\bf{7}}\\{\bf{7}}&{\bf{5}}&{\bf{6}}&{\bf{5}}\\{\bf{8}}&{\bf{6}}&{{\bf{10}}}&{\bf{9}}\\{\bf{7}}&{\bf{5}}&{\bf{9}}&{{\bf{10}}}\end{array}} \right]\]

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free