Chapter 5: Q5.4-30E (page 267)
Find the \(B\) matrix for the transformation\({\rm{x}} \mapsto A{\rm{x}}\), when \(B = \left\{ {{b_1},{b_2},{b_3}} \right\}\).
\(A = \left( {\begin{aligned}{}{ - 14}&{}&4&{}&{ - 14}\\{ - 33}&{}&9&{}&{ - 31}\\{11}&{}&{ - 4}&{}&{11}\end{aligned}} \right)\), \({b_1} = \left( {\begin{aligned}{}{ - 1}\\{ - 2}\\1\end{aligned}} \right)\), \({b_2} = \left( {\begin{aligned}{}{ - 1}\\{ - 1}\\1\end{aligned}} \right)\), \({b_3} = \left( {\begin{aligned}{}{ - 1}\\{ - 2}\\0\end{aligned}} \right)\)
Short Answer
The B matrix of the transformation \({\rm{x}} \mapsto A{\rm{x}}\)is \(D = {P^{ - 1}}AP\), which is \(\left( {\begin{aligned}{}8&{}&3&{}&{ - 6}\\0&{}&1&{}&3\\0&{}&0&{}&{ - 3}\end{aligned}} \right)\)