(M) Let \(T\) be the transformation whose standard matrix is given below. Find a basis for \({\mathbb{R}^4}\) with the property that \({\left( T \right)_B}\) is diagonal.

\(A = \left( {\begin{aligned}{}{15}&{}&{ - 66}&{}&{ - 44}&{}&{ - 33}\\0&{}&{13}&{}&{21}&{}&{ - 15}\\1&{}&{ - 15}&{}&{ - 21}&{}&{12}\\2&{}&{ - 18}&{}&{ - 22}&{}&8\end{aligned}} \right)\)

Short Answer

Expert verified

The basis for \({\mathbb{R}^4}\) such that \({\left( T \right)_B}\) is diagonal is \(B = \left( {\begin{aligned}{}0&{}&{ - 30}&{}&{39}&{}&{11}\\{ - 3}&{}&{ - 7}&{}&5&{}&{ - 3}\\3&{}&3&{}&0&{}&4\\2&{}&0&{}&3&{}&4\end{aligned}} \right)\)

Step by step solution

01

Find Eigen values

Use matrix method to find the Eigen values of the given matrix \(A\), by following steps given below:

  1. Enter the matrix \(A\) into the program.
  2. Apply the command, \({\rm{ev}}\,{\rm{ = }}\,{\rm{eign}}\left( {\rm{A}} \right)\).
  3. Press Enter.

On running the command, we obtain the following result:

\(\begin{aligned}{}{\rm{ev}}\,{\rm{ = }}\,{\rm{eign}}\left( {\rm{A}} \right)\\ = \left( {2,\,\,4,\,\,4,\,\,5} \right)\end{aligned}\)

02

Find null basis for each Eigen values 

Use matrix method to find the Null basis for Eigen value, \(\lambda = 2\) of the given matrix \(A\), by following steps given below:

  1. Apply the command, \({\rm{nullbasis}}\left( {{\rm{A - ev}}\left( {\rm{1}} \right)} \right)*\,{\rm{eye}}\left( 4 \right)\).
  2. Press Enter.

On running the command, we obtain the following result:

\({\rm{nullbasis}}\left( {{\rm{A - ev}}\left( 2 \right)} \right)*\,{\rm{eye}}\left( 4 \right) = \left( \begin{aligned}{l} - 10.0000\\\,\, - 2.3333\\\,\,\,\,\,\,1.0000\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\end{aligned} \right)\left( \begin{aligned}{l}13.0000\\\,1.6667\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\\\,\,1.0000\end{aligned} \right)\). Multiply it by 3 to obtain the basis for Eigen space of \(\lambda = 4\), as follows:

\(\left\{ {{{\bf{b}}_2},{{\bf{b}}_3}} \right\} = \left\{ {\left( \begin{aligned}{l} - 30\\\, - 7\\\,\,\,\,3\\\,\,\,\,0\end{aligned} \right)\left( \begin{aligned}{l}39\\5\\\,0\\\,3\end{aligned} \right)} \right\}\).

Following the similar steps to find Null basis for Eigen value, \(\lambda = 4\) of the given matrix \(A\), as follows:

\({\rm{nullbasis}}\left( {{\rm{A - ev}}\left( {\rm{1}} \right)} \right)*\,{\rm{eye}}\left( 4 \right) = \left( \begin{aligned}{l}\,\,\,0.0000\\ - 1.5000\\\,\,\,\,1.5000\\\,\,\,\,1.0000\end{aligned} \right)\). Multiply it by 2 to obtain the basis for Eigen space of \(\lambda = 2\), as follows:

\({{\bf{b}}_1} = \left( \begin{aligned}{l}\,\,0\\ - 3\\\,\,\,3\\\,\,\,2\end{aligned} \right)\).

Following the similar steps to find Null basis for Eigen value, \(\lambda = 5\) of the given matrix \(A\), as follows:

\({\rm{nullbasis}}\left( {{\rm{A - ev}}\left( 4 \right)} \right)*\,{\rm{eye}}\left( 4 \right) = \left( \begin{aligned}{l}\,\,\,2.7000\\ - 0.7500\\\,\,\,\,1.0000\\\,\,\,\,1.0000\end{aligned} \right)\). Multiply it by 4 to obtain the basis for Eigen space of \(\lambda = 5\), as follows:

\({{\bf{b}}_4} = \left( \begin{aligned}{l}\,\,11\\ - 3\\\,\,\,4\\\,\,\,4\end{aligned} \right)\).

03

Draw a conclusion

The basis \(B\),for \({\mathbb{R}^4}\) such that \({\left( T \right)_B}\) is diagonal is \(B = \left\{ {{{\bf{b}}_1},\,{{\bf{b}}_2},\,{{\bf{b}}_3},\,{{\bf{b}}_4}} \right\}\), which is written as follows:

\(B = \left( {\begin{aligned}{}0&{}&{ - 30}&{}&{39}&{}&{11}\\{ - 3}&{}&{ - 7}&{}&5&{}&{ - 3}\\3&{}&3&{}&0&{}&4\\2&{}&0&{}&3&{}&4\end{aligned}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

10. \(\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{3}}\\{\bf{4}}&{\bf{1}}\end{array}} \right)\)

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

5. \(\left[ {\begin{array}{*{20}{c}}2&1\\-1&4\end{array}} \right]\)

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=-Ax(t)

[M]Repeat Exercise 25 for \[A{\bf{ = }}\left[ {\begin{array}{*{20}{c}}{{\bf{ - 8}}}&{\bf{5}}&{{\bf{ - 2}}}&{\bf{0}}\\{{\bf{ - 5}}}&{\bf{2}}&{\bf{1}}&{{\bf{ - 2}}}\\{{\bf{10}}}&{{\bf{ - 8}}}&{\bf{6}}&{{\bf{ - 3}}}\\{\bf{3}}&{{\bf{ - 2}}}&{\bf{1}}&{\bf{0}}\end{array}} \right]\].

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free