Let \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\)be a basis for a vector space \(V\) and\(T:V \to {\mathbb{R}^2}\) be a linear transformation with the property that

\(T\left( {{x_1}{{\bf{b}}_1} + {x_2}{{\bf{b}}_2} + {x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\)

Find the matrix for \(T\) relative to \(B\) and the standard basis for \({\mathbb{R}^2}\).

Short Answer

Expert verified

The matrix for \(T\) relative to \(B\) and standard basis for \({\mathbb{R}^2}\) is \(\left( {\begin{aligned}2&{}&{ - 4}&{}&5\\0&{}&{ - 1}&{}&3\end{aligned}} \right)\).

Step by step solution

01

The standard basis 

The standard basis for \({\mathbb{R}^2}\) is given by \({{\bf{e}}_1},{{\bf{e}}_2}\).

\({{\bf{e}}_1} = \left( {\begin{aligned}1\\0\end{aligned}} \right)\), \({{\bf{e}}_2} = \left( {\begin{aligned}0\\1\end{aligned}} \right)\)

02

Find the coordinate vectors for standard basis 

Let \(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2}} \right\}\).

Find \({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon }\) by using \(T\left( {{x_1}{{\bf{b}}_1},{x_2}{{\bf{b}}_2},{x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\).

\(\begin{aligned}{c}{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_\varepsilon } &= T\left( {1{{\bf{b}}_1} + 0{{\bf{b}}_2} + 0{{\bf{b}}_3}} \right)\\ &= \left( {\begin{aligned}2\\0\end{aligned}} \right)\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_\varepsilon }\) by using \(T\left( {{x_1}{{\bf{b}}_1},{x_2}{{\bf{b}}_2},{x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\).

\(\begin{aligned}{c}{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_\varepsilon } &= T\left( {0{{\bf{b}}_1} + 1{{\bf{b}}_2} + 0{{\bf{b}}_3}} \right)\\ &= \left( {\begin{aligned}{ - 4}\\{ - 1}\end{aligned}} \right)\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_\varepsilon }\) by using \(T\left( {{x_1}{{\bf{b}}_1},{x_2}{{\bf{b}}_2},{x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\).

\(\begin{aligned}{c}{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_\varepsilon } &= T\left( {0{{\bf{b}}_1} + 0{{\bf{b}}_2} + 1{{\bf{b}}_3}} \right)\\ &= \left( {\begin{aligned}5\\3\end{aligned}} \right)\end{aligned}\)

03

The matrix for a linear transformation

A matrix associated with a linear transformation \(T\) for \(V\) and \(W\) is given by \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(V\) and \(W\) are \(n\) and \(m\)-dimensional subspaces respectively, and \(B\), and\(C\) are the bases for \(V\), and \(W\).

04

Find the matrix for a linear transformation

Form a matrix \(T\) for the obtained vectors in step 2, by using the formula \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(n = 3\).

\(\begin{aligned}{\left( {T\left( {\bf{x}} \right)} \right)_\varepsilon } = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_\varepsilon }}&{{{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)}_\varepsilon }}\end{aligned}} \right)\\ = \left( {\begin{aligned}2&{}&{ - 4}&{}&5\\0&{}&{ - 1}&{}&3\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}2&{}&{ - 4}&{}&5\\0&{}&{ - 1}&{}&3\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left[ {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right]\).

22. Let \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + {a_{\bf{2}}}{t^{\bf{2}}} + {t^{\bf{3}}}\), and let \(\lambda \) be a zero of \(p\).

  1. Write the companion matrix for \(p\).
  2. Explain why \({\lambda ^{\bf{3}}} = - {a_{\bf{0}}} - {a_{\bf{1}}}\lambda - {a_{\bf{2}}}{\lambda ^{\bf{2}}}\), and show that \(\left( {{\bf{1}},\lambda ,{\lambda ^2}} \right)\) is an eigenvector of the companion matrix for \(p\).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

14. \(\left( {\begin{array}{*{20}{c}}4&0&{ - 2}\\2&5&4\\0&0&5\end{array}} \right)\)

Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

1. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{7}}\\{\bf{2}}&{\bf{3}}\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{2}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}\end{array}} \right)\)

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

5. \(\left( {\begin{array}{*{20}{c}}2&2&1\\1&3&1\\1&2&2\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&1&2\\1&0&{ - 1}\\1&{ - 1}&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}5&0&0\\0&1&0\\0&0&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{1}{4}}&{\frac{1}{2}}&{\frac{1}{4}}\\{\frac{1}{4}}&{\frac{1}{2}}&{ - \frac{3}{4}}\\{\frac{1}{4}}&{ - \frac{1}{2}}&{\frac{1}{4}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free