Assume the mapping\(T:{{\rm P}_2} \to {{\rm P}_{\bf{2}}}\)defined by \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\) is linear. Find the matrix representation of\(T\) relative to the bases \(B = \left\{ {1,t,{t^2}} \right\}\).

Short Answer

Expert verified

The matrix representation of \(T\) relative to the bases\(\left\{ {1,t,{t^2}} \right\}\)is \(\left( {\begin{aligned}3&{}&0&{}&0\\5&{}&{ - 2}&{}&0\\0&{}&4&{}&1\end{aligned}} \right)\).

Step by step solution

01

The matrix for a linear transformation 

A matrix associated with a linear transformation \(T\) for \(V\) and \(W\) is given by \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(V\) and \(W\) are \(n\) and \(m\)-dimensional subspaces respectively, and \(B\), and \(C\) are the bases for \(V\), and \(W\).

02

Find the matrix for a linear transformation 

Find \(T\left( {{{\bf{b}}_1}} \right)\), \(T\left( {{{\bf{b}}_2}} \right)\) and \(T\left( {{{\bf{b}}_3}} \right)\) for \(B = \left\{ {1,t,{t^2}} \right\}\) by using \(T\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right) = 3{a_0} + \left( {5{a_0} - 2{a_1}} \right)t + \left( {4{a_1} + {a_2}} \right){t^2}\).

\(\begin{aligned}{c}T\left( {{{\bf{b}}_1}} \right) &= T\left( 1 \right)\\ &= 3 + 5t\end{aligned}\)

\(\begin{aligned}{c}T\left( {{{\bf{b}}_2}} \right) &= T\left( t \right)\\ &= - 2t + 4{t^2}\end{aligned}\)

\(\begin{aligned}{c}T\left( {{{\bf{b}}_3}} \right) &= T\left( {{t^2}} \right)\\ &= {t^2}\end{aligned}\)

Find \({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_B}\), \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_B}\) and \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_B}\).

\({\left( {T\left( {{{\bf{b}}_1}} \right)} \right)_B} = \left( {\begin{aligned}3\\5\\0\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_2}} \right)} \right)_B} = \left( {\begin{aligned}0\\{ - 2}\\4\end{aligned}} \right)\), \({\left( {T\left( {{{\bf{b}}_3}} \right)} \right)_B} = \left( {\begin{aligned}0\\0\\1\end{aligned}} \right)\)

Form a matrix \(T\) for the obtained vectors by using the formula \({\left( {T\left( {\bf{x}} \right)} \right)_C} = \left( {\begin{aligned}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_C}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_C}}& \cdots &{{{\left( {T\left( {{{\bf{b}}_n}} \right)} \right)}_C}}\end{aligned}} \right)\), where \(n = 3\).

\(\begin{aligned}{\left( {T\left( {\bf{x}} \right)} \right)_B} &= \left( {\begin{aligned}{*{20}{c}}{{{\left( {T\left( {{{\bf{b}}_1}} \right)} \right)}_B}}&{{{\left( {T\left( {{{\bf{b}}_2}} \right)} \right)}_B}}&{{{\left( {T\left( {{{\bf{b}}_3}} \right)} \right)}_B}}\end{aligned}} \right)\\ &= \left( {\begin{aligned}3&{}&0&{}&0\\5&{}&{ - 2}&{}&0\\0&{}&4&{}&1\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}3&{}&0&{}&0\\5&{}&{ - 2}&{}&0\\0&{}&4&{}&1\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M)Use a matrix program to diagonalize

\(A = \left( {\begin{aligned}{*{20}{c}}{ - 3}&{ - 2}&0\\{14}&7&{ - 1}\\{ - 6}&{ - 3}&1\end{aligned}} \right)\)

If possible. Use the eigenvalue command to create the diagonal matrix \(D\). If the program has a command that produces eigenvectors, use it to create an invertible matrix \(P\). Then compute \(AP - PD\) and \(PD{P^{{\bf{ - 1}}}}\). Discuss your results.

Apply the results of Exercise \({\bf{15}}\) to find the eigenvalues of the matrices \(\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{2}}&{\bf{2}}\\{\bf{2}}&{\bf{1}}&{\bf{2}}\\{\bf{2}}&{\bf{2}}&{\bf{1}}\end{aligned}} \right)\) and \(\left( {\begin{aligned}{*{20}{c}}{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}&{\bf{3}}\\{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{3}}&{\bf{7}}\end{aligned}} \right)\).

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

11. \(\left( {\begin{array}{*{20}{c}}{ - 1}&4&{ - 2}\\{ - 3}&4&0\\{ - 3}&1&3\end{array}} \right)\)

Question: Is \(\lambda = - 2\) an eigenvalue of \(\left( {\begin{array}{*{20}{c}}7&3\\3&{ - 1}\end{array}} \right)\)? Why or why not?

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

16. \(\left( {\begin{array}{*{20}{c}}{\bf{0}}&{{\bf{ - 4}}}&{{\bf{ - 6}}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 3}}}\\{\bf{1}}&{\bf{2}}&{\bf{5}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free