Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is

\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)

Short Answer

Expert verified

The value of\({\left( {T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)} \right)_B}\)is \(\left( {\begin{aligned}{24}\\{ - 20}\\{11}\end{aligned}} \right)\), and \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right) = 24{{\bf{b}}_1} - 20{{\bf{b}}_2} + 11{{\bf{b}}_3}\).

Step by step solution

01

The vector form

Let \({\left( {\bf{x}} \right)_B} = 3{{\bf{b}}_1} - 4{{\bf{b}}_2}\), which can also be written as \({\left( {\bf{x}} \right)_B} = 3{{\bf{b}}_1} - 4{{\bf{b}}_2} + 0{{\bf{b}}_3}\).

Write \({\left( {\bf{x}} \right)_B}\) in the vector form.

\({\left( {\bf{x}} \right)_B} = \left( {\begin{aligned}3\\{ - 4}\\0\end{aligned}} \right)\)

02

Linear transformation forms \(V\) into \(V\) 

The \(B\)-matrix for \(T\) or a matrix for \(T\) relative to \(B\) for \(T:V \to V\) is given by,

\({\left( {T\left( {\bf{x}} \right)} \right)_B} = {\left( T \right)_B}{\left( {\bf{x}} \right)_B}\)

03

Find linear transformation form \(V\) into \(V\)

The given matrix is \({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\).

Write\({\left( {T\left( {\bf{x}} \right)} \right)_B} = {\left( T \right)_B}{\left( {\bf{x}} \right)_B}\).

\(\begin{aligned}{\left( {T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)} \right)_B} &= {\left( T \right)_B}{\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)_B}\\ &= \left( {\begin{aligned}0&{ - 6}&1\\0&5&{ - 1}\\1&{ - 2}&7\end{aligned}} \right)\left( {\begin{aligned}3\\{ - 4}\\0\end{aligned}} \right)\\ &= \left( {\begin{aligned}{0\left( 3 \right) + \left( { - 6} \right)\left( { - 4} \right) + 1\left( 0 \right)}\\{0\left( 3 \right) + \left( 5 \right)\left( { - 4} \right) + \left( { - 1} \right)\left( 0 \right)}\\{1\left( 3 \right) + \left( { - 2} \right)\left( { - 4} \right) + 7\left( 0 \right)}\end{aligned}} \right)\\ &= \left( {\begin{aligned}{24}\\{ - 20}\\{11}\end{aligned}} \right)\end{aligned}\)

So, the required matrix is \(\left( {\begin{aligned}{24}\\{ - 20}\\{11}\end{aligned}} \right)\).

Thus, \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right) = 24{{\bf{b}}_1} - 20{{\bf{b}}_2} + 11{{\bf{b}}_3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(J\) be the \(n \times n\) matrix of all \({\bf{1}}\)’s and consider \(A = \left( {a - b} \right)I + bJ\) that is,

\(A = \left( {\begin{aligned}{*{20}{c}}a&b&b&{...}&b\\b&a&b&{...}&b\\b&b&a&{...}&b\\:&:&:&:&:\\b&b&b&{...}&a\end{aligned}} \right)\)

Use the results of Exercise \({\bf{16}}\) in the Supplementary Exercises for Chapter \({\bf{3}}\) to show that the eigenvalues of \(A\) are \(a - b\) and \(a + \left( {n - {\bf{1}}} \right)b\). What are the multiplicities of these eigenvalues?

19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix

\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)

(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.

Let\(\varepsilon = \left\{ {{{\bf{e}}_1},{{\bf{e}}_2},{{\bf{e}}_3}} \right\}\) be the standard basis for \({\mathbb{R}^3}\),\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space \(V\) and\(T:{\mathbb{R}^3} \to V\) be a linear transformation with the property that

\(T\left( {{x_1},{x_2},{x_3}} \right) = \left( {{x_3} - {x_2}} \right){{\bf{b}}_1} - \left( {{x_1} - {x_3}} \right){{\bf{b}}_2} + \left( {{x_1} - {x_2}} \right){{\bf{b}}_3}\)

  1. Compute\(T\left( {{{\bf{e}}_1}} \right)\), \(T\left( {{{\bf{e}}_2}} \right)\) and \(T\left( {{{\bf{e}}_3}} \right)\).
  2. Compute \({\left( {T\left( {{{\bf{e}}_1}} \right)} \right)_B}\), \({\left( {T\left( {{{\bf{e}}_2}} \right)} \right)_B}\) and \({\left( {T\left( {{{\bf{e}}_3}} \right)} \right)_B}\).
  3. Find the matrix for \(T\) relative to \(\varepsilon \), and\(B\).

Let \(A = \left( {\begin{aligned}{*{20}{c}}{.4}&{ - .3}\\{.4}&{1.2}\end{aligned}} \right)\). Explain why \({A^k}\) approaches \(\left( {\begin{aligned}{*{20}{c}}{ - .5}&{ - .75}\\1&{1.5}\end{aligned}} \right)\) as \(k \to \infty \).

Suppose \(A\) is diagonalizable and \(p\left( t \right)\) is the characteristic polynomial of \(A\). Define \(p\left( A \right)\) as in Exercise 5, and show that \(p\left( A \right)\) is the zero matrix. This fact, which is also true for any square matrix, is called the Cayley-Hamilton theorem.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free