In Exercises 7–12, use Example 6 to list the eigenvalues of\(A\). In each case, the transformation\({\rm{x}} \mapsto A{\rm{x}}\)is the composition of a rotation and a scaling. Give the angle\(\varphi \)of the rotation, where\( - \pi < \varphi \le \pi \)and give the scale\(r\).

11.\(\left( {\begin{aligned}{}{\,\,\,.1}&{}&{.1}\\{ - .1}&{}&{.1}\end{aligned}} \right)\)

Short Answer

Expert verified

The angle of rotation is \(\varphi = \frac{\pi }{4}\,{\rm{radians}}\) and the scale factor \(r = \frac{{\sqrt 2 }}{{10}}\).

Step by step solution

01

Find the characteristic equation  

If \(A\) is a \(n \times n\) matrix, then \(det\left( {A - \lambda I} \right) = 0\), is called the characteristic equation of a matrix \(A\).

It is given that\(A = \left( {\begin{aligned}{}{\,\,\,.1}&{}&{.1}\\{ - .1}&{}&{.1}\end{aligned}} \right)\)and\(I = \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\)is the identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{aligned}{}A - \lambda I &= \left( {\begin{aligned}{}{\,\,\,.1}&{}&{.1}\\{ - .1}&{}&{.1}\end{aligned}} \right) - \lambda \left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)\\ &= \left( {\begin{aligned}{}{.1 - \lambda }&{}&{.1}\\{ - .1}&{}&{.1 - \lambda }\end{aligned}} \right)\end{aligned}\)

Now calculate the determinant of the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{aligned}{}det\left( {A - \lambda I} \right) &= det\left( {\begin{aligned}{}{.1 - \lambda }&{}&{.1}\\{ - .1}&{}&{.1 - \lambda }\end{aligned}} \right)\\ &= \left( {.1 - \lambda } \right)\left( {.1 - \lambda } \right) + .01\\ &= {\lambda ^2} - .2\lambda + .02\end{aligned}\)

So, the characteristic equation of the matrix \(A\) is \({\lambda ^2} - .2\lambda + .02 = 0\).

02

Find the Eigenvalues

Thus, the eigenvalues of\(A\)are the solutions of the characteristic equation\(\det \left( {A - \lambda I} \right) = 0\). So, solve the characteristic equation\({\lambda ^2} - .2\lambda + .02 = 0\), as follows:

For the quadratic equation, \(a{x^2} + bx + c = 0\) , the general solution is given as\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} \;\;}}{{2a}}\) .

Thus, the solution of the characteristic equation \({\lambda ^2} - .2\lambda + .02 = 0\) is obtained as follows:

\(\begin{aligned}{}{\lambda ^2} - .2\lambda + .02 &= 0\\\lambda &= \frac{{ - \left( { - .2} \right) \pm \sqrt {{{\left( { - .2} \right)}^2} - 4\left( {0.2} \right)} }}{2}\\ &= \frac{{.2 \pm \sqrt { - .04} }}{2}\\ &= .1 \pm .1i\end{aligned}\)

The eigenvalues of \(A\) are \(\lambda = .1 \pm .1i\) .

03

Find the angle of rotation and scale factor

For the Eigenvalue,\({\lambda _i} = a \pm bi\), the scale factor is\(r = \left| \lambda \right|\)and the angle of rotation is\(\varphi = {\tan ^{ - 1}}\left( {\frac{b}{a}} \right)\).

For the Eigenvalue\(\lambda = .1 \pm .1i\), \(\left( {a,b} \right) = \left( {.1,.1} \right)\). Find the scale factor \(r\) as follows:

\(\begin{aligned}{}r &= \left| \lambda \right|\\ &= \left| {.1 \pm .1i} \right|\\ &= \sqrt {{{\left( {.1} \right)}^2} + {{\left( {.1} \right)}^2}} \\ &= .1\left( {\sqrt 2 } \right)\\ &= \frac{{\sqrt 2 }}{{10}}\end{aligned}\)

Find the angle of rotation \(\varphi \)as follows:

\(\begin{aligned}{}\phi &= {\tan ^{ - 1}}\left( {\frac{{.1}}{{.1}}} \right)\\ &= \frac{\pi }{4}\,{\rm{radians}}\end{aligned}\)

Thus, the angle of rotation is \(\varphi = \frac{\pi }{4}\,{\rm{radians}}\) and the scale factor \(r = \frac{{\sqrt 2 }}{{10}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=Ax(t)What can you say about the stability of the systems

x(t+1)=-Ax(t)

Exercises 19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

21. Use mathematical induction to prove that for \(n \ge {\bf{2}}\),\(\begin{aligned}{c}det\left( {{C_p} - \lambda I} \right) = {\left( { - {\bf{1}}} \right)^n}\left( {{a_{\bf{0}}} + {a_{\bf{1}}}\lambda + ... + {a_{n - {\bf{1}}}}{\lambda ^{n - {\bf{1}}}} + {\lambda ^n}} \right)\\ = {\left( { - {\bf{1}}} \right)^n}p\left( \lambda \right)\end{aligned}\)

(Hint: Expanding by cofactors down the first column, show that \(det\left( {{C_p} - \lambda I} \right)\) has the form \(\left( { - \lambda B} \right) + {\left( { - {\bf{1}}} \right)^n}{a_{\bf{0}}}\) where \(B\) is a certain polynomial (by the induction assumption).)

Use mathematical induction to show that if \(\lambda \) is an eigenvalue of an \(n \times n\) matrix \(A\), with a corresponding eigenvector, then, for each positive integer \(m\), \({\lambda ^m}\)is an eigenvalue of \({A^m}\), with \({\rm{x}}\) a corresponding eigenvector.

A common misconception is that if \(A\) has a strictly dominant eigenvalue, then, for any sufficiently large value of \(k\), the vector \({A^k}{\bf{x}}\) is approximately equal to an eigenvector of \(A\). For the three matrices below, study what happens to \({A^k}{\bf{x}}\) when \({\bf{x = }}\left( {{\bf{.5,}}{\bf{.5}}} \right)\), and try to draw general conclusions (for a \({\bf{2 \times 2}}\) matrix).

a. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{{\bf{.8}}}&{\bf{0}}\\{\bf{0}}&{{\bf{.2}}}\end{aligned}} \right)\) b. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{{\bf{.8}}}\end{aligned}} \right)\) c. \(A{\bf{ = }}\left( {\begin{aligned}{ {20}{c}}{\bf{8}}&{\bf{0}}\\{\bf{0}}&{\bf{2}}\end{aligned}} \right)\)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

7. \(\left[ {\begin{array}{*{20}{c}}5&3\\- 4&4\end{array}} \right]\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free