In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

13. \(\left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix \(P\)and matrix \(C\) are \(P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&2\end{aligned}} \right)\).

Step by step solution

01

Finding the matrix \(P\) and the matrix \(C\) such that \(A = PC{P^{ - 1}}\)

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the eigenvalues

Given that \(A = \left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right)\) .

Find the eigenvalues by using \(\det \left( {A - \lambda I} \right) = 0\).

\(\begin{aligned}{}\det \left( {A - \lambda I} \right) &= 0\\\left( {1 - \lambda } \right)\left( {3 - \lambda } \right) + 2 &= 0\\3 - \lambda - 3\lambda + {\lambda ^2} + 5 &= 0\\{\lambda ^2} - 4\lambda + 5 &= 0\\\lambda &= \frac{{4 \pm \sqrt {16 - 20} }}{2}\\\lambda &= 2 \pm i\end{aligned}\)

Thus, the eigenvalues are \(\lambda = 2 \pm i\).

03

Find eigenvector and invertible matrix

For the eigenvalue \(\lambda = 2 - i\)we have,

\(\begin{aligned}{}\left( {A - \lambda I} \right)v &= 0\\\left( {\left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right) - \left( {2 - i} \right)\left( {\begin{aligned}{}1&{}&0\\0&{}&1\end{aligned}} \right)} \right)\left( {\begin{aligned}{}x\\y\end{aligned}} \right) &= 0\\\left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}\\1&{}&{1 + i}\end{aligned}} \right)\left( {\begin{aligned}{}x\\y\end{aligned}} \right) &= 0\end{aligned}\)

Now considering the augmented matrix we get,

\(\begin{aligned}{}\left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\\1&{}&{1 + i}&{}&|&{}&0\end{aligned}} \right){\rm{ }}{R_2} \to \left( { - 1 + i} \right){R_2}\\ \sim \left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\\{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\end{aligned}} \right){\rm{ }}{R_2} \to {R_2} - {R_1}\\ \sim \left( {\begin{aligned}{}{ - 1 + i}&{}&{ - 2}&{}&|&{}&0\\0&{}&0&{}&|&{}&0\end{aligned}} \right)\end{aligned}\)

Hence, we get\(y\)is a free variable.

Let\(y = 1\)then,

\(\begin{aligned}{}\left( { - 1 + i} \right)x - 2 &= 0\\x &= \frac{2}{{ - 1 + i}}\\x &= \frac{{2\left( {1 + i} \right)}}{{ - 2}}\\x &= - 1 - i\end{aligned}\)

Hence \(v = \left( {\begin{aligned}{}x\\y\end{aligned}} \right) \Rightarrow v = \left( {\begin{aligned}{}{ - 1 - i}\\1\end{aligned}} \right)\).

Now \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\).

04

Find matrix \(C\) by using \(C = {P^{ - 1}}AP\) 

Write the matrix\({P^{ - 1}}\).

\({P^{ - 1}} = \frac{1}{2}\left( {\begin{aligned}{}0&{}&1\\1&{}&{ - 1}\end{aligned}} \right)\)

Substitute the value of\({P^{ - 1}}\), \(P\) and \(A\) into \(C = {P^{ - 1}}AP\) to obtain matrix \(C\).

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\C &= \frac{1}{2}\left( {\begin{aligned}{}0&{}&1\\1&{}&{ - 1}\end{aligned}} \right)\left( {\begin{aligned}{}1&{}&{ - 2}\\1&{}&3\end{aligned}} \right)\left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\\C &= \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&2\end{aligned}} \right)\end{aligned}\)

The invertible matrix \(P\) and matrix \(C\) are \(P = \left( {\begin{aligned}{}{ - 1}&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\) and \(C = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&2\end{aligned}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free