In Exercises 13-20, find an invertible matrix \(P\) and a matrix \(C\) of the form \(\left( {\begin{aligned}{}a&{}&{ - b}\\b&{}&a\end{aligned}} \right)\) such that the given matrix has the form\(A = PC{P^{ - 1}}\). For Exercises 13-16, use information from Exercises 1-4.

14. \(\left( {\begin{aligned}{}5&{}&{ - 5}\\1&{}&1\end{aligned}} \right)\)

Short Answer

Expert verified

The invertible matrix \(P\)and matrix \(C\) are \(P = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&0\end{aligned}} \right),C = \left( {\begin{aligned}{}3&{}&{ - 1}\\1&{}&3\end{aligned}} \right)\).

Step by step solution

01

 Finding the matrix \(P\)  and the matrix \(C\) such that \(A = PC{P^{ - 1}}\)  

Let \(A\) be a \(2 \times 2\) with eigenvalues of the form \(a \pm bi\) , and let \(v\) be the eigenvector corresponding to the eigenvalue \(a - bi\), then the matrix \(P\) will be \(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right)\).

The matrix \(C\) can be obtained by \(C = {P^{ - 1}}AP\).

02

Find the Invertible matrix \(P\) and \(C\) 

\(A = \left( {\begin{aligned}{}5&{}&{ - 5}\\1&{}&1\end{aligned}} \right)\).

From Exercise 2, the eigenvalues of A is\(\lambda = 3 \pm i\), and the eigenvector corresponds to\(\lambda = 3 - i\)is \(v = \left( {\begin{aligned}{}{2 - i}\\1\end{aligned}} \right)\).

By Theorem 9,\(P = \left( {\begin{aligned}{}{{\mathop{\rm Re}\nolimits} v}&{{\mathop{\rm Im}\nolimits} v}\end{aligned}} \right) \Rightarrow P = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\).

This implies that,\({P^{ - 1}} = \left( {\begin{aligned}{}0&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\).

Substitute the value of\({P^{ - 1}}\), \(P\) and \(A\) into \(C = {P^{ - 1}}AP\) to obtain matrix \(C\).

\(\begin{aligned}{}C &= {P^{ - 1}}AP\\C &= \left( {\begin{aligned}{}0&{}&1\\{ - 1}&{}&2\end{aligned}} \right)\left( {\begin{aligned}{}5&{}&{ - 5}\\1&1\end{aligned}} \right)\left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\\C &= \left( {\begin{aligned}{}3&{}&{ - 1}\\1&{}&3\end{aligned}} \right)\end{aligned}\)

Hence, the\(P\)and\(C\)are \(P = \left( {\begin{aligned}{}2&{}&{ - 1}\\1&{}&0\end{aligned}} \right)\)and \(C = \left( {\begin{aligned}{}3&{}&{ - 1}\\1&{}&3\end{aligned}} \right)\) respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

16. \(\left[ {\begin{array}{*{20}{c}}5&0&0&0\\8&- 4&0&0\\0&7&1&0\\1&{ - 5}&2&1\end{array}} \right]\)

Question: In Exercises \({\bf{5}}\) and \({\bf{6}}\), the matrix \(A\) is factored in the form \(PD{P^{ - {\bf{1}}}}\). Use the Diagonalization Theorem to find the eigenvalues of \(A\) and a basis for each eigenspace.

6. \(\left( {\begin{array}{*{20}{c}}{\bf{4}}&{\bf{0}}&{{\bf{ - 2}}}\\{\bf{2}}&{\bf{5}}&{\bf{4}}\\{\bf{0}}&{\bf{0}}&{\bf{5}}\end{array}} \right){\bf{ = }}\left( {\begin{array}{*{20}{c}}{{\bf{ - 2}}}&{\bf{0}}&{{\bf{ - 1}}}\\{\bf{0}}&{\bf{1}}&{\bf{2}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{5}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{5}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{2}}&{\bf{1}}&{\bf{4}}\\{{\bf{ - 1}}}&{\bf{0}}&{{\bf{ - 2}}}\end{array}} \right)\)

Use Exercise 12 to find the eigenvalues of the matrices in Exercises 13 and 14.

14. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{5}}&{{\bf{ - 6}}}&{{\bf{ - 7}}}\\{\bf{2}}&{\bf{4}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{{\bf{ - 7}}}&{{\bf{ - 4}}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{1}}\end{array}} \right)\)

Question: Is \(\left( {\begin{array}{*{20}{c}}4\\{ - 3}\\1\end{array}} \right)\) an eigenvector of \(\left( {\begin{array}{*{20}{c}}3&7&9\\{ - 4}&{ - 5}&1\\2&4&4\end{array}} \right)\)? If so, find the eigenvalue.

Consider an invertible n × n matrix A such that the zero state is a stable equilibrium of the dynamical system x(t+1)=ATx(t)What can you say about the stability of the systems.

x(t+1)=ATx(t)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free