Let A be a \(2 \times 2\) matrix with eigenvalues \(3\) and \(1/3\) and corresponding eigenvectors \({{\rm{v}}_1} = \left( {\begin{aligned}{}1\\1\end{aligned}} \right)\) and \({{\rm{v}}_2} = \left( {\begin{aligned}{}{ - 1}\\1\end{aligned}} \right)\).Let \(\left\{ {{{\rm{x}}_k}} \right\}\) be a solution of the difference equation \({{\rm{x}}_{k + 1}} = A{{\rm{x}}_k},{{\rm{x}}_0} = \left( {\begin{aligned}{}9\\1\end{aligned}} \right)\) .

  1. Compute\({{\rm{x}}_1} = A{{\rm{x}}_0}\). (Hint: You do not need to know A itself.
  2. Find a formula for\({{\rm{x}}_k}\)involving k and the eigenvectors\({{\rm{v}}_1}\)and\({{\rm{v}}_2}\).

Short Answer

Expert verified

(a)The solution is \({{\rm{x}}_1} = \left( {\begin{aligned}{}{49/3}\\{41/3}\end{aligned}} \right)\).

(a)The formula for \({{\rm{x}}_k}\)is \({{\rm{x}}_k} = 5{\left( 3 \right)^k}{{\rm{v}}_1} - 4{\left( {1/3} \right)^k}{{\rm{v}}_2}\)

Step by step solution

01

Write the condition for the vector and a matrix 

a)

Express \({x_0}\) in terms of \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\) to find A's action on\({x_0}\) . To put it another way, find \({c_1}\) and \({c_2}\) such that \({{\rm{x}}_0} = {c_1}{{\rm{v}}_1} + {c_2}{{\rm{v}}_2}\). Because the eigenvectors \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\) are linearly independent (by inspection and also because they correspond to unique eigenvalues), this is a distinct possibility.

\({R^2}\) has a foundation (In \({R^2}\), two linearly independent vectors span \({R^2}\) automatically.)

02

Row reduction in matrix

A row can be reduced with help of a vector\({{\rm{v}}_1}\) and \({{\rm{v}}_2}\).

Shows that \({{\rm{x}}_0} = 5{{\rm{v}}_1} - 4{{\rm{v}}_2}\).

Since \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\). are the Eigenvector for Eigenvalue \(3\) and\({{\rm{x}}_k} = 5{\left( 3 \right)^k}{{\rm{v}}_1} - 4{\left( {1/3} \right)^k}{{\rm{v}}_2},k \ge 0\).

\({x_1} = A{x_0}\)

Put the value of \({x_0}\)in the above equation.

\({{\rm{x}}_1} = 5A{{\rm{v}}_1} - 4A{{\rm{v}}_2}\)

Put the eigenvalue in the above equation.

\({{\rm{x}}_1} = 5.3{{\rm{v}}_1} - 4.\frac{1}{3}{{\rm{v}}_2}\)

Put all the values in the above equation.

\(\begin{aligned}{}{{\rm{x}}_1} &= \left( {\begin{aligned}{}{15}\\{15}\end{aligned}} \right) - \left( {\begin{aligned}{}{ - 4/3}\\{4/3}\end{aligned}} \right)\\{{\rm{x}}_1} &= \left( {\begin{aligned}{}{49/3}\\{41/3}\end{aligned}} \right)\end{aligned}\)

03

Write the condition for the vector and a matrix 

b)

The \({{\rm{v}}_1}\) term is multiplied by the eigenvalue 3 and the \({{\rm{v}}_2}\) term is multiplied by the eigenvalue 1/3 each time A operates on a linear combination of \({{\rm{v}}_1}\) and \({{\rm{v}}_2}\):

Then the value of \({{\rm{x}}_2}\) is \({{\rm{x}}_2} = A{{\rm{x}}_1}\).

Put the value of \({{\rm{x}}_{\rm{1}}}\) in the above equation

\(\begin{aligned}{}{{\rm{x}}_2} &= A\left( {5.3{{\rm{v}}_1} - 4\left( {1/3} \right){{\rm{v}}_2}} \right)\\{{\rm{x}}_2} &= 5{\left( 3 \right)^2}{{\rm{v}}_1} - 4{\left( {1/3} \right)^2}{{\rm{v}}_2}\end{aligned}\)

In the general form, we can write

\({{\rm{x}}_k} = 5{\left( 3 \right)^k}{{\rm{v}}_1} - 4{\left( {1/3} \right)^k}{{\rm{v}}_2}\)for \(k \ge 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

Question: Diagonalize the matrices in Exercises \({\bf{7--20}}\), if possible. The eigenvalues for Exercises \({\bf{11--16}}\) are as follows:\(\left( {{\bf{11}}} \right)\lambda {\bf{ = 1,2,3}}\); \(\left( {{\bf{12}}} \right)\lambda {\bf{ = 2,8}}\); \(\left( {{\bf{13}}} \right)\lambda {\bf{ = 5,1}}\); \(\left( {{\bf{14}}} \right)\lambda {\bf{ = 5,4}}\); \(\left( {{\bf{15}}} \right)\lambda {\bf{ = 3,1}}\); \(\left( {{\bf{16}}} \right)\lambda {\bf{ = 2,1}}\). For exercise \({\bf{18}}\), one eigenvalue is \(\lambda {\bf{ = 5}}\) and one eigenvector is \(\left( {{\bf{ - 2,}}\;{\bf{1,}}\;{\bf{2}}} \right)\).

7. \(\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{6}}&{{\bf{ - 1}}}\end{array}} \right)\)

Use Exercise 12 to find the eigenvalues of the matrices in Exercises 13 and 14.

14. \(A{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{5}}&{{\bf{ - 6}}}&{{\bf{ - 7}}}\\{\bf{2}}&{\bf{4}}&{\bf{5}}&{\bf{2}}\\{\bf{0}}&{\bf{0}}&{{\bf{ - 7}}}&{{\bf{ - 4}}}\\{\bf{0}}&{\bf{0}}&{\bf{3}}&{\bf{1}}\end{array}} \right)\)

Let \(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\)be a basis for a vector space \(V\) and\(T:V \to {\mathbb{R}^2}\) be a linear transformation with the property that

\(T\left( {{x_1}{{\bf{b}}_1} + {x_2}{{\bf{b}}_2} + {x_3}{{\bf{b}}_3}} \right) = \left( {\begin{aligned}{2{x_1} - 4{x_2} + 5{x_3}}\\{ - {x_2} + 3{x_3}}\end{aligned}} \right)\)

Find the matrix for \(T\) relative to \(B\) and the standard basis for \({\mathbb{R}^2}\).

Question: In Exercises \({\bf{1}}\) and \({\bf{2}}\), let \(A = PD{P^{ - {\bf{1}}}}\) and compute \({A^{\bf{4}}}\).

2. \(P{\bf{ = }}\left( {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 3}&5\end{array}} \right)\), \(D{\bf{ = }}\left( {\begin{array}{*{20}{c}}{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free