Chapter 5: Q7.6-20E (page 267)
For the Matrices A find real closed formulas for the trajectory where
Chapter 5: Q7.6-20E (page 267)
For the Matrices A find real closed formulas for the trajectory where
All the tools & learning materials you need for study success - in one app.
Get started for freeQuestion: Construct a random integer-valued \(4 \times 4\) matrix \(A\).
a. Let \(A\) be a diagonalizable \(n \times n\) matrix. Show that if the multiplicity of an eigenvalue \(\lambda \) is \(n\), then \(A = \lambda I\).
b. Use part (a) to show that the matrix \(A =\left({\begin{aligned}{*{20}{l}}3&1\\0&3\end{aligned}}\right)\) is not diagonalizable.
Question: Is \(\left( {\begin{array}{*{20}{c}}4\\{ - 3}\\1\end{array}} \right)\) an eigenvector of \(\left( {\begin{array}{*{20}{c}}3&7&9\\{ - 4}&{ - 5}&1\\2&4&4\end{array}} \right)\)? If so, find the eigenvalue.
Question: In Exercises 21 and 22, \(A\) and \(B\) are \(n \times n\) matrices. Mark each statement True or False. Justify each answer.
Let\(B = \left\{ {{{\bf{b}}_1},{{\bf{b}}_2},{{\bf{b}}_3}} \right\}\) be a basis for a vector space\(V\). Find \(T\left( {3{{\bf{b}}_1} - 4{{\bf{b}}_2}} \right)\) when \(T\) isa linear transformation from \(V\) to \(V\) whose matrix relative to \(B\) is
\({\left( T \right)_B} = \left( {\begin{aligned}0&{}&{ - 6}&{}&1\\0&{}&5&{}&{ - 1}\\1&{}&{ - 2}&{}&7\end{aligned}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.