Exercises 7-10 use the terminology from section 8.2.

7. a. Let \(T = \left\{ {\left( {\begin{aligned}{ {20}{c}}{ - {\bf{1}}}\\{\bf{0}}\end{aligned}} \right),\,\left( {\begin{aligned}{ {20}{c}}{\bf{2}}\\{\bf{3}}\end{aligned}} \right),\,\,\left( {\begin{aligned}{ {20}{c}}{\bf{4}}\\{\bf{1}}\end{aligned}} \right)} \right\}\), and let \({{\bf{p}}_{\bf{1}}} = \left( {\begin{aligned}{ {20}{c}}{\bf{2}}\\{\bf{1}}\end{aligned}} \right)\), \({{\bf{p}}_{\bf{2}}} = \left( {\begin{aligned}{ {20}{c}}{\bf{3}}\\{\bf{2}}\end{aligned}} \right)\), \({{\bf{p}}_{\bf{3}}} = \left( {\begin{aligned}{ {20}{c}}{\bf{2}}\\{\bf{0}}\end{aligned}} \right)\), and \({{\bf{p}}_{\bf{4}}} = \left( {\begin{aligned}{ {20}{c}}{\bf{0}}\\{\bf{2}}\end{aligned}} \right)\). Find the barycentric coordinates of \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), \({{\bf{p}}_{\bf{3}}}\), and \({{\bf{p}}_{\bf{4}}}\) with respect to T.

b. Use your answers in part (a) to determine whether each of \({{\bf{p}}_{\bf{1}}}\),…,\({{\bf{p}}_{\bf{4}}}\) in part (a) is inside, outside, or on the edge of conv T, a triangular region.

Short Answer

Expert verified

a. \(\left( {\frac{1}{3},\,\frac{1}{6},\frac{1}{2}} \right)\), \(\left( {0,\frac{1}{2},\frac{1}{2}} \right)\), \(\left( {\frac{1}{2}, - \frac{1}{4},\frac{3}{4}} \right)\), and \(\left( {\frac{1}{2},\frac{3}{4}, - \frac{1}{4}} \right)\).

b. \({{\bf{p}}_1}\) will be inside conv T, \({{\bf{p}}_2}\) is on edge and, \({{\bf{p}}_3}\) and \({{\bf{p}}_4}\) is outside conv T.

Step by step solution

01

Find the augmented matrix

Using the vectors of T and \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), \({{\bf{p}}_3}\), and \({{\bf{p}}_4}\) the augmented matrix can be expressed as shown below:

\(\left( {\begin{aligned}{ {20}{c}}{\widetilde {{{\bf{v}}_1}}}&{\widetilde {{{\bf{v}}_2}}}&{\widetilde {{{\bf{v}}_3}}}&{\widetilde {{{\bf{p}}_1}}}&{\widetilde {{{\bf{p}}_2}}}&{\widetilde {{{\bf{p}}_3}}}&{\widetilde {{{\bf{p}}_4}}}\end{aligned}} \right) \sim \left( {\begin{aligned}{ {20}{c}}1&1&1&1&1&1&1\\{ - 1}&2&4&2&3&2&0\\0&3&1&1&2&0&2\end{aligned}} \right)\)

02

Obtain the row reduced form of the augmented matrix

\(\begin{aligned}{c}M = \left( {\begin{aligned}{ {20}{c}}1&1&1&1&1&1&1\\0&3&5&3&4&3&1\\0&3&1&1&2&0&2\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} + {R_1}} \right)\\ = \left( {\begin{aligned}{ {20}{c}}1&1&1&1&1&1&1\\0&1&{\frac{5}{3}}&1&{\frac{4}{3}}&1&{\frac{1}{3}}\\0&3&1&1&2&0&2\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to \frac{1}{3}{R_2}} \right)\\ = \left( {\begin{aligned}{ {20}{c}}1&1&1&1&1&1&1\\0&1&{\frac{5}{3}}&1&{\frac{4}{3}}&1&{\frac{1}{3}}\\0&0&{ - 4}&{ - 2}&{ - 2}&{ - 3}&1\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_3} \to {R_3} - 3{R_2}} \right)\end{aligned}\)

Row reduce further,

\(\begin{aligned}{c}M = \left( {\begin{aligned}{ {20}{c}}1&1&1&1&1&1&1\\0&1&{\frac{5}{3}}&1&{\frac{4}{3}}&1&{\frac{1}{3}}\\0&0&1&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{3}{4}}&{ - \frac{1}{4}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_3} \to - \frac{1}{4}{R_3}} \right)\\ = \left( {\begin{aligned}{ {20}{c}}1&1&1&1&1&1&1\\0&1&0&{\frac{1}{6}}&{\frac{1}{2}}&{ - \frac{1}{4}}&{\frac{3}{4}}\\0&0&1&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{3}{4}}&{ - \frac{1}{4}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{R_2} \to {R_2} - \frac{5}{3}{R_3}} \right)\,\\ = \left( {\begin{aligned}{ {20}{c}}1&0&0&{\frac{1}{3}}&0&{\frac{1}{2}}&{\frac{1}{2}}\\0&1&0&{\frac{1}{6}}&{\frac{1}{2}}&{ - \frac{1}{4}}&{\frac{3}{4}}\\0&0&1&{\frac{1}{2}}&{\frac{1}{2}}&{\frac{3}{4}}&{ - \frac{1}{4}}\end{aligned}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \begin{aligned}{l}{R_1} \to {R_1} - {R_2}\\{R_1} \to {R_1} - {R_3}\end{aligned} \right)\end{aligned}\)

03

Conclusions from the row-reduced matrix

In the row reduced matrix column 4, column 5, column 6, and column 7 represents the barycentric coordinates of \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), \({{\bf{p}}_3}\), and \({{\bf{p}}_4}\) respectively.

So, for \({{\bf{p}}_1}\), \({{\bf{p}}_2}\), \({{\bf{p}}_3}\), and \({{\bf{p}}_4}\) the barycentric coordinate are \(\left( {\frac{1}{3},\,\frac{1}{6},\frac{1}{2}} \right)\), \(\left( {0,\frac{1}{2},\frac{1}{2}} \right)\), \(\left( {\frac{1}{2}, - \frac{1}{4},\frac{3}{4}} \right)\), and \(\left( {\frac{1}{2},\frac{3}{4}, - \frac{1}{4}} \right)\) respectively.

04

Find the solution for part (b)

As barycentric coordinate of \({{\bf{p}}_3}\) and \({{\bf{p}}_4}\) has one negative value, therefore \({{\bf{p}}_3}\) and \({{\bf{p}}_4}\) are outside conv T.

As all coordinates for \({{\bf{p}}_1}\) are positive, therefore, it will be inside conv T. For \({{\bf{p}}_2}\), its first coordinate is zero, therefore \({{\bf{p}}_2}\) is on the edge of conv T.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Exercises 9-14 require techniques section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\) determinants described prior to Exercise 15-18 in Section 3.1. [Note: Finding the characteristic polynomial of a \(3 \times 3\) matrix is not easy to do with just row operations, because the variable \(\lambda \) is involved.

12. \(\left[ {\begin{array}{*{20}{c}}- 1&0&1\\- 3&4&1\\0&0&2\end{array}} \right]\)

Question: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multiplicities.

15. \(\left[ {\begin{array}{*{20}{c}}4&- 7&0&2\\0&3&- 4&6\\0&0&3&{ - 8}\\0&0&0&1\end{array}} \right]\)

Show that \(I - A\) is invertible when all the eigenvalues of \(A\) are less than 1 in magnitude. (Hint: What would be true if \(I - A\) were not invertible?)

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

4. \(\left[ {\begin{array}{*{20}{c}}5&-3\\-4&3\end{array}} \right]\)

Let \(A{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{{a_{{\bf{11}}}}}&{{a_{{\bf{12}}}}}\\{{a_{{\bf{21}}}}}&{{a_{{\bf{22}}}}}\end{aligned}} \right)\). Recall from Exercise \({\bf{25}}\) in Section \({\bf{5}}{\bf{.4}}\) that \({\rm{tr}}\;A\) (the trace of \(A\)) is the sum of the diagonal entries in \(A\). Show that the characteristic polynomial of \(A\) is \({\lambda ^2} - \left( {{\rm{tr}}A} \right)\lambda + \det A\). Then show that the eigenvalues of a \({\bf{2 \times 2}}\) matrix \(A\) are both real if and only if \(\det A \le {\left( {\frac{{{\rm{tr}}A}}{2}} \right)^2}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free