Question: Exercises 9–14 require techniques from Section 3.1. Find the characteristic polynomial of each matrix, using either a cofactor expansion or the special formula for \(3 \times 3\)determinants described prior to Exercises 15–18 in Section 3.1. (Note:Finding the characteristic polynomial of a \(3 \times 3\)matrix is not easy to do with just row operations, because the variableis involved.)

9.\(\left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\2&3&{ - 1}\\0&6&0\end{array}} \right)\)

Short Answer

Expert verified

Characteristic polynomial is \( - {\lambda ^3} + 4{\lambda ^2} - 9\lambda + 6\)

Step by step solution

01

Formulate the matrix \(A - \lambda I\) 

If \(A\) is an \(n \times n\) matrix, then \(det\left( {A - \lambda I} \right)\), which is a polynomial of degree \(n\), is called the characteristic polynomial of \(A\).

It is given that\(A = \left( {\begin{array}{*{20}{c}}2&7\\7&2\end{array}} \right)\)and\(I = \left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\)is identity matrix. Find the matrix\(\left( {A - \lambda I} \right)\)as shown below:

\(\begin{array}{c}A - \lambda I = \left( {\begin{array}{*{20}{c}}1&0&{ - 1}\\2&3&{ - 1}\\0&6&0\end{array}} \right) - \lambda \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{1 - \lambda }&0&{ - 1}\\2&{3 - \lambda }&{ - 1}\\0&6&{ - \lambda }\end{array}} \right)\end{array}\)

02

Find the determinant of the matrix \(A - \lambda I\)

For \(n \ge 2\) the determinant of an \(n \times n\) matrix \(A = [{a_{ij}}]\) is the sum of \(n\)terms of the form \( \pm {a_{1j}}\det {A_{1j}},\) with plus and minus signs alternating, where the entries \({a_{11}},{a_{12}}, \ldots ,{a_{1n}}\) are from the first row of \(A\). In symbols,

\(\begin{gathered} {\text{det}}A = {a_{11}}\det {A_{11}} - {a_{12}}\det {A_{12}} + \ldots + {\left( { - 1} \right)^{1 + n}}{a_{1n}}\det {A_{1n}} \\ = \mathop \sum \limits_{j = 1}^n {\left( { - 1} \right)^{1 + j}}{a_{1j}}\det {A_{1j}} \\ \end{gathered} \)

With the help of above defined formula, the\(\det A\)is calculated as follows:

\(\begin{array}{c}det\left( {A - \lambda I} \right) = det\left( {\begin{array}{*{20}{c}}{1 - \lambda }&0&{ - 1}\\2&{3 - \lambda }&{ - 1}\\0&6&{ - \lambda }\end{array}} \right)\\ = \left( {1 - \lambda } \right)\left| {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 1}\\6&{ - \lambda }\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}2&{ - 1}\\0&{ - \lambda }\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}2&{3 - \lambda }\\0&6\end{array}} \right|\\ = \left( {1 - \lambda } \right)\left( {\left( {3 - \lambda } \right)\left( { - \lambda } \right) - \left( 6 \right)\left( { - 1} \right)} \right) - 0\left( {\left( 2 \right)\left( { - \lambda } \right) - 0\left( { - 1} \right)} \right) - 1\left( {\left( 2 \right)\left( 6 \right) - 0} \right)\\ = - 3\lambda + 3{\lambda ^2} + {\lambda ^2} - {\lambda ^3} + 6 - 6\lambda \\ = - {\lambda ^3} + 4{\lambda ^2} - 9\lambda + 6\end{array}\)

Thus, the characteristic polynomial is \( - {\lambda ^3} + 4{\lambda ^2} - 9\lambda + 6\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose \({\bf{x}}\) is an eigenvector of \(A\) corresponding to an eigenvalue \(\lambda \).

a. Show that \(x\) is an eigenvector of \(5I - A\). What is the corresponding eigenvalue?

b. Show that \(x\) is an eigenvector of \(5I - 3A + {A^2}\). What is the corresponding eigenvalue?

19–23 concern the polynomial \(p\left( t \right) = {a_{\bf{0}}} + {a_{\bf{1}}}t + ... + {a_{n - {\bf{1}}}}{t^{n - {\bf{1}}}} + {t^n}\) and \(n \times n\) matrix \({C_p}\) called the companion matrix of \(p\): \({C_p} = \left( {\begin{aligned}{*{20}{c}}{\bf{0}}&{\bf{1}}&{\bf{0}}&{...}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{}&{\bf{0}}\\:&{}&{}&{}&:\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{}&{\bf{1}}\\{ - {a_{\bf{0}}}}&{ - {a_{\bf{1}}}}&{ - {a_{\bf{2}}}}&{...}&{ - {a_{n - {\bf{1}}}}}\end{aligned}} \right)\).

23. Let \(p\) be the polynomial in Exercise \({\bf{22}}\), and suppose the equation \(p\left( t \right) = {\bf{0}}\) has distinct roots \({\lambda _{\bf{1}}},{\lambda _{\bf{2}}},{\lambda _{\bf{3}}}\). Let \(V\) be the Vandermonde matrix

\(V{\bf{ = }}\left( {\begin{aligned}{*{20}{c}}{\bf{1}}&{\bf{1}}&{\bf{1}}\\{{\lambda _{\bf{1}}}}&{{\lambda _{\bf{2}}}}&{{\lambda _{\bf{3}}}}\\{\lambda _{\bf{1}}^{\bf{2}}}&{\lambda _{\bf{2}}^{\bf{2}}}&{\lambda _{\bf{3}}^{\bf{2}}}\end{aligned}} \right)\)

(The transpose of \(V\) was considered in Supplementary Exercise \({\bf{11}}\) in Chapter \({\bf{2}}\).) Use Exercise \({\bf{22}}\) and a theorem from this chapter to deduce that \(V\) is invertible (but do not compute \({V^{{\bf{ - 1}}}}\)). Then explain why \({V^{{\bf{ - 1}}}}{C_p}V\) is a diagonal matrix.

Question: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.

3. \(\left[ {\begin{array}{*{20}{c}}3&-2\\1&-1\end{array}} \right]\)

Let\(B = \left\{ {{{\bf{b}}_{\bf{1}}},{{\bf{b}}_{\bf{2}}},{{\bf{b}}_{\bf{3}}}} \right\}\) and \(D = \left\{ {{{\bf{d}}_{\bf{1}}},{{\bf{d}}_{\bf{2}}}} \right\}\) be bases for vector space \(V\) and \(W\), respectively. Let \(T:V \to W\) be a linear transformation with the property that

\(T\left( {{{\bf{b}}_1}} \right) = 3{{\bf{d}}_1} - 5{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_2}} \right) = - {{\bf{d}}_1} + 6{{\bf{d}}_2}\), \(T\left( {{{\bf{b}}_3}} \right) = 4{{\bf{d}}_2}\)

Find the matrix for \(T\) relative to \(B\), and\(D\).

Show that if \(A\) is diagonalizable, with all eigenvalues less than 1 in magnitude, then \({A^k}\) tends to the zero matrix as \(k \to \infty \). (Hint: Consider \({A^k}x\) where \(x\) represents any one of the columns of \(I\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free