In Exercises 7-12, describe all solutions of \(Ax = 0\) in parametric vector form, where \(A\) is row equivalent to the given matrix.

11.\(\left( {\begin{array}{*{20}{c}}1&{ - 4}&{ - 2}&0&3&{ - 5}\\0&0&1&0&0&{ - 1}\\0&0&0&0&1&{ - 4}\\0&0&0&0&0&0\end{array}} \right)\)

Short Answer

Expert verified

The solution is parametric vector form is \(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}4\\1\\0\\0\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\\0\\0\end{array}} \right) + {x_6}\left( {\begin{array}{*{20}{c}}{ - 5}\\0\\1\\0\\4\\1\end{array}} \right)\).

Step by step solution

01

Write the condition for the product of a vector and a matrix

The representation of a column of a matrix is \(A = \left( {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{ \cdot \cdot \cdot }&{{a_n}}\end{array}} \right)\), and the representation of a vector is \({\bf{x}} = \left( {\begin{array}{*{20}{c}}{{x_1}}\\ \vdots \\{{x_n}}\end{array}} \right)\).

According to the definition, the entries in vector x reflect the values in a linear combination of columns of matrix A.

And the product obtained using the row-vector rule is shown below.

\(\begin{array}{c}A{\bf{x}} = \left( {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{ \cdot \cdot \cdot }&{{a_n}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\ \vdots \\{{x_n}}\end{array}} \right)\\ = {x_1}{a_1} + {x_2}{a_2} + \cdots + {x_n}{a_n}\end{array}\)

The number of columns in matrix \(A\) should be equal to the number of entries in vector x so that \(A{\bf{x}}\) can be defined.

02

Write the augmented matrix in the system of equations

It is given that there are six columns in the given matrix, which means there should be six entries in vector x.

Thus, the equation \(A{\bf{x}} = 0\) can be written as shown below:

\(\begin{array}{c}A{\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}1&{ - 4}&{ - 2}&0&3&{ - 5}\\0&0&1&0&0&{ - 1}\\0&0&0&0&1&{ - 4}\\0&0&0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

\(\begin{array}{c}A{\bf{x}} = 0\\\left( {\begin{array}{*{20}{c}}1&{ - 4}&{ - 2}&0&3&{ - 5}\\0&0&1&0&0&{ - 1}\\0&0&0&0&1&{ - 4}\\0&0&0&0&0&0\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

Write the above matrix equation in the system of equations as shown below:

\(\begin{array}{c}{x_1}\left( {\begin{array}{*{20}{c}}1\\0\\0\\0\end{array}} \right) + {x_2}\left( {\begin{array}{*{20}{c}}{ - 4}\\0\\0\\0\end{array}} \right) + {x_3}\left( {\begin{array}{*{20}{c}}{ - 2}\\1\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right) + {x_5}\left( {\begin{array}{*{20}{c}}3\\0\\1\\0\end{array}} \right) + {x_6}\left( {\begin{array}{*{20}{c}}{ - 5}\\{ - 1}\\{ - 4}\\0\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{{x_1} - 4{x_2} - 2{x_3} + \left( 0 \right){x_4} + 3{x_5} - 5{x_6}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + {x_3} + \left( 0 \right){x_4} + \left( 0 \right){x_5} - {x_6}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + \left( 0 \right){x_3} + \left( 0 \right){x_4} + {x_5} - 4{x_6}}\\{\left( 0 \right){x_1} + \left( 0 \right){x_2} + \left( 0 \right){x_3} + \left( 0 \right){x_4} + \left( 0 \right){x_5} + \left( 0 \right){x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}0\\0\\0\\0\end{array}} \right)\end{array}\)

So, the system of equations becomes:

\(\begin{array}{c}{x_1} - 4{x_2} - 2{x_3} + 3{x_5} - 5{x_6} = 0\\{x_3} - {x_6} = 0\\{x_5} - 4{x_6} = 0.\end{array}\)

03

Separate the variables into free and basic types

From the above equations, \({x_1}\), \({x_3}\), and \({x_5}\) correspond to the pivot positions. So, \({x_1}\), \({x_3}\), \({x_5}\) are basic variables, and \({x_2}\), \({x_4}\), \({x_6}\) are the free variables.

Let \({x_2} = a\), \({x_4} = b\), \({x_6} = c\).

04

Obtain the values of basic variables in parametric forms

Substitute \({x_6} = c\) in the equation \({x_5} - 4{x_6} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_5} - 4\left( c \right) = 0\\{x_5} = 4c\end{array}\)

Substitute \({x_6} = c\) in the equation \({x_3} - {x_6} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_3} - \left( c \right) = 0\\{x_3} = c\end{array}\)

Substitute \({x_2} = a\) and \({x_6} = c\) in the equation \({x_1} - 4{x_2} - 2{x_3} + 3{x_5} - 5{x_6} = 0\) to obtain the general solution.

\(\begin{array}{c}{x_1} - 4\left( a \right) - 2\left( c \right) + 3\left( {4c} \right) - 5\left( c \right) = 0\\{x_1} - 4a - 2c + 12c - 5c = 0\\{x_1} = 4a - 5c\end{array}\)

05

Write the solution in the parametric form

Obtain the vector in the parametric form by using \({x_1} = 4a - 5c\), \({x_2} = a\), \({x_3} = c\), \({x_4} = b\), \({x_5} = 4c\) and \({x_6} = c\).

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{4a - 5c}\\a\\c\\b\\{4c}\\c\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{4a}\\a\\0\\0\\0\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}0\\0\\0\\b\\0\\0\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - 5c}\\0\\c\\0\\{4c}\\c\end{array}} \right)\\ = a\left( {\begin{array}{*{20}{c}}4\\1\\0\\0\\0\\0\end{array}} \right) + b\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\\0\\0\end{array}} \right) + c\left( {\begin{array}{*{20}{c}}{ - 5}\\0\\1\\0\\4\\1\end{array}} \right)\end{array}\)

Or it can be written as shown below:

\(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}4\\1\\0\\0\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\\0\\0\end{array}} \right) + {x_6}\left( {\begin{array}{*{20}{c}}{ - 5}\\0\\1\\0\\4\\1\end{array}} \right)\)

Thus, the solution in the parametric vector form is \(\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right) = {x_2}\left( {\begin{array}{*{20}{c}}4\\1\\0\\0\\0\\0\end{array}} \right) + {x_4}\left( {\begin{array}{*{20}{c}}0\\0\\0\\1\\0\\0\end{array}} \right) + {x_6}\left( {\begin{array}{*{20}{c}}{ - 5}\\0\\1\\0\\4\\1\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the polynomial of degree 2[a polynomial of the form f(t)=a+bt+ct2] whose graph goes through the points localid="1659342678677" (1,-1),(2,3)and(3,13).Sketch the graph of the polynomial.

In Exercises 15 and 16, list five vectors in Span \(\left\{ {{v_1},{v_2}} \right\}\). For each vector, show the weights on \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) used to generate the vector and list the three entries of the vector. Do not make a sketch.

16. \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right],{v_2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

Consider a dynamical systemwith two components. The accompanying sketch shows the initial state vectorx0and two eigen vectorsυ1andυ2of A (with eigen values λ1andλ2respectively). For the given values ofλ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=0.9,λ2=0.9

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

7.Vectors a, b, c, and d

Suppose Tand U are linear transformations from \({\mathbb{R}^n}\) to \({\mathbb{R}^n}\) such that \(T\left( {U{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\) . Is it true that \(U\left( {T{\mathop{\rm x}\nolimits} } \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\)? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free