Let \(b = \left[ {\begin{array}{*{20}{c}}{ - 1}\\3\\{ - 1}\\4\end{array}} \right]\), and let \(A\) be the matrix in exercise 10. Is \(b\)in the range of linear transformation\(x \mapsto Ax\)? Why or why not?

Short Answer

Expert verified

The system represented by \(\left[ {A\,\,b} \right]\) is inconsistent; so \(b\) is not in the range of \(x \to Ax\).

Step by step solution

01

Formation of the augmented matrix

Using matrix \(A = \left[ {\begin{array}{*{20}{c}}1&3&9&2\\1&0&3&{ - 4}\\0&1&2&3\\{ - 2}&3&0&5\end{array}} \right]\) and \(b = \left[ {\begin{array}{*{20}{c}}{ - 1}\\3\\{ - 1}\\4\end{array}} \right]\), form the augmented matrix \(\left[ {A\,\,b} \right]\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\1&0&3&{ - 4}&3\\0&1&2&3&{ - 1}\\{ - 2}&3&0&5&4\end{array}} \right]\)

02

Simplification of the augmented matrix using row operations

Simplify the augmented matrix using row operations.

At row 4, multiply row 1 with 2 and add it to row 1, i.e. \({R_4} \to {R_4} + 2{R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\1&0&3&{ - 4}&3\\0&1&2&3&{ - 1}\\{ - 2 + 2\left( 1 \right)}&{3 + 2\left( 3 \right)}&{0 + 2\left( 9 \right)}&{5 + 2\left( 2 \right)}&{4 + 2\left( { - 1} \right)}\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\1&0&3&{ - 4}&3\\0&1&2&3&{ - 1}\\0&9&{18}&9&2\end{array}} \right]\)

03

Simplification of the augmented matrix using row operations

At row 2, subtract row 2 from row 1, i.e. \({R_2} \to {R_2} - {R_1}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\{1 - 1}&{0 - 3}&{3 - 9}&{ - 4 - 2}&{3 + 1}\\0&1&2&3&{ - 1}\\0&9&{18}&9&2\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&1&2&3&{ - 1}\\0&9&{18}&9&2\end{array}} \right]\)

Interchange row 2 and row 3, i.e. \({R_2} \leftrightarrow {R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&9&{18}&9&2\end{array}} \right]\)

04

Simplification of the augmented matrix using row operations

For row 4, multiply row 3 with 3 and add it to row 4, i.e. \({R_4} \to {R_4} + 3{R_3}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&{9 + 3\left( { - 3} \right)}&{18 + 3\left( { - 6} \right)}&{9 + 3\left( { - 6} \right)}&{2 + 3\left( 4 \right)}\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3}&{ - 6}&{ - 6}&4\\0&0&0&{ - 9}&{14}\end{array}} \right]\)

05

Simplification of the augmented matrix using row operations

At row 3, multiply row 2 with 3 and add it to row 3, i.e. \({R_3} \to {R_3} + 3{R_2}\).

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&{ - 3 + 3\left( 1 \right)}&{ - 6 + 3\left( 2 \right)}&{ - 6 + 3\left( 3 \right)}&{4 + 3\left( { - 1} \right)}\\0&0&0&{ - 9}&{14}\end{array}} \right]\)

After the row operation, the matrix will become:

\(\left[ {\begin{array}{*{20}{c}}1&3&9&2&{ - 1}\\0&1&2&3&{ - 1}\\0&0&0&3&1\\0&0&0&{ - 9}&{14}\end{array}} \right]\)

As the system given by \(\left[ {A\,\,b} \right]\) is inconsistent, so \(b\) is not in the range of transformation \(x \to Ax\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

Consider a dynamical systemwith two components. The accompanying sketch shows the initial state vectorx0and two eigen vectorsυ1andυ2of A (with eigen values λ1andλ2respectively). For the given values ofλ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=0.9,λ2=0.9

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

7.Vectors a, b, c, and d

In Exercises 5, write a system of equations that is equivalent to the given vector equation.

5. \({x_1}\left[ {\begin{array}{*{20}{c}}6\\{ - 1}\\5\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\4\\0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1\\{ - 7}\\{ - 5}\end{array}} \right]\)

Use Theorem 7 in section 1.7 to explain why the columns of the matrix Aare linearly independent.

\(A = \left( {\begin{aligned}{*{20}{c}}1&0&0&0\\2&5&0&0\\3&6&8&0\\4&7&9&{10}\end{aligned}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free