In Exercises 15 and 16, fill in the missing enteries of the matrix, assuming that the equation holds for all values of the variables

\(\left[ {\begin{array}{*{20}{c}}?&?\\?&?\\?&?\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1} - {x_2}}\\{ - 2{x_1} + {x_2}}\\{{x_1}}\end{array}} \right]\)

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 2}&1\\1&0\end{array}} \right]\)

Step by step solution

01

Compare the rows of the matrix

Compare both sides of the equation \[\left[ {\begin{array}{*{20}{c}}?&?\\?&?\\?&?\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1} - {x_2}}\\{ - 2{x_1} + {x_2}}\\{{x_1}}\end{array}} \right]\] to get the first row of the matrix with unknown elements as \(\left[ {\begin{array}{*{20}{c}}1&{ - 1}\end{array}} \right]\).

02

Compare the rows of the matrix

Compare both sides of the equation \[\left[ {\begin{array}{*{20}{c}}?&?\\?&?\\?&?\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1} - {x_2}}\\{ - 2{x_1} + {x_2}}\\{{x_1}}\end{array}} \right]\] to get the second row of the matrix with unknown elements as \(\left[ {\begin{array}{*{20}{c}}{ - 2}&1\end{array}} \right]\).

03

Compare the rows of the matrix

Compare both sides of the equation \[\left[ {\begin{array}{*{20}{c}}?&?\\?&?\\?&?\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1} - {x_2}}\\{ - 2{x_1} + {x_2}}\\{{x_1}}\end{array}} \right]\] to get the third row of the matrix with unknown elements as \(\left[ {\begin{array}{*{20}{c}}1&0\end{array}} \right]\).

So, the matrix given in the equation is \(\left[ {\begin{array}{*{20}{c}}1&{ - 1}\\{ - 2}&1\\1&0\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write the reduced echelon form of a \(3 \times 3\) matrix A such that the first two columns of Aare pivot columns and

\(A = \left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\\1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

Describe the possible echelon forms of the matrix A. Use the notation of Example 1 in Section 1.2.

a. A is a \({\bf{2}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{2}}}\).

b. A is a \({\bf{3}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{3}}}\).

Find the general solutions of the systems whose augmented matrices are given as

14. \(\left[ {\begin{array}{*{20}{c}}1&2&{ - 5}&{ - 6}&0&{ - 5}\\0&1&{ - 6}&{ - 3}&0&2\\0&0&0&0&1&0\\0&0&0&0&0&0\end{array}} \right]\).

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

Solve the systems in Exercises 11‑14.

12.\(\begin{aligned}{c}{x_1} - 3{x_2} + 4{x_3} = - 4\\3{x_1} - 7{x_2} + 7{x_3} = - 8\\ - 4{x_1} + 6{x_2} - {x_3} = 7\end{aligned}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free