In Exercises 17-20, show that \(T\) is a linear transformation by finding a matrix that implements the mapping. Note that \({x_1}\), \({x_2}\),……… are not vectors but are enteries in vectors

\(T\left( {{x_1},{x_2},{x_3},{x_4}} \right) = \left( {0,{x_1} + {x_2},{x_2} + {x_3},{x_3} + {x_4}} \right)\)

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}0&0&0&0\\1&1&0&0\\0&1&1&0\\0&0&1&1\end{array}} \right]\)

Step by step solution

01

Express \(T\left( x \right)\) in the form of a matrix

Write the linear transformation \(T\left( x \right)\).

\(T\left( x \right) = \left[ {\begin{array}{*{20}{c}}0\\{{x_1} + {x_2}}\\{{x_2} + {x_3}}\\{{x_3} + {x_4}}\end{array}} \right]\)

02

Solve the equation \(T\left( x \right) = Ax\)

\(\left[ {\begin{array}{*{20}{c}}0\\{{x_1} + {x_2}}\\{{x_2} + {x_3}}\\{{x_3} + {x_4}}\end{array}} \right] = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\)

By matrix multiplication, the order of matrix \(A\) is \(4 \times 4\).

03

Compare the rows of the matrix

From the equation \(\left[ {\begin{array}{*{20}{c}}0\\{{x_1} + {x_2}}\\{{x_2} + {x_3}}\\{{x_3} + {x_4}}\end{array}} \right] = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\), the first row of matrix \(A\) is \(\left[ {\begin{array}{*{20}{c}}0&0&0&0\end{array}} \right]\).

04

Compare the rows of the matrix

From the equation \(\left( {\begin{array}{*{20}{c}}0\\{{x_1} + {x_2}}\\{{x_2} + {x_3}}\\{{x_3} + {x_4}}\end{array}} \right) = \left( A \right)\left( {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right)\), the third row of matrix \(A\) is \(\left( {\begin{array}{*{20}{c}}0&1&1&0\end{array}} \right)\).

05

Compare the rows of the matrix

From the equation \(\left[ {\begin{array}{*{20}{c}}0\\{{x_1} + {x_2}}\\{{x_2} + {x_3}}\\{{x_3} + {x_4}}\end{array}} \right] = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\), the third row of matrix \(A\) is \(\left[ {\begin{array}{*{20}{c}}0&1&1&0\end{array}} \right]\).

06

Compare the rows of the matrix

From the equation \(\left[ {\begin{array}{*{20}{c}}0\\{{x_1} + {x_2}}\\{{x_2} + {x_3}}\\{{x_3} + {x_4}}\end{array}} \right] = \left[ A \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\end{array}} \right]\), the third row of matrix \(A\) is \(\left[ {\begin{array}{*{20}{c}}0&0&1&1\end{array}} \right]\).

So, the matrix given in the equation is \(\left[ {\begin{array}{*{20}{c}}0&0&0&0\\1&1&0&0\\0&1&1&0\\0&0&1&1\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(A\) be a \(3 \times 3\) matrix with the property that the linear transformation \({\bf{x}} \mapsto A{\bf{x}}\) maps \({\mathbb{R}^3}\) into \({\mathbb{R}^3}\). Explain why transformation must be one-to-one.

Find the general solutions of the systems whose augmented matrices are given as

12. \(\left[ {\begin{array}{*{20}{c}}1&{ - 7}&0&6&5\\0&0&1&{ - 2}&{ - 3}\\{ - 1}&7&{ - 4}&2&7\end{array}} \right]\).

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

In Exercises 13 and 14, determine if \(b\) is a linear combination of the vectors formed from the columns of the matrix \(A\).

13. \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 4}&2\\0&3&5\\{ - 2}&8&{ - 4}\end{array}} \right],{\mathop{\rm b}\nolimits} = \left[ {\begin{array}{*{20}{c}}3\\{ - 7}\\{ - 3}\end{array}} \right]\)

If Ais an \(n \times n\) matrix and the transformation \({\bf{x}}| \to A{\bf{x}}\) is one-to-one, what else can you say about this transformation? Justify your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free