Explain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).

Short Answer

Expert verified

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) is not linearly dependent according to theorem 7; it is linearly independent.

Step by step solution

01

Prove directly that the set is linearly independent

Theorem 7states that an indexed set \(S = \left\{ {{{\mathop{\rm v}\nolimits} _1},...,{v_p}} \right\}\) of two or more vectors islinearly dependentif and only if at least one of the vectors in \(S\) is a linear combination of the others. If \(S\) is linearly dependent and \({{\mathop{\rm v}\nolimits} _1} \ne 0\), then some \({{\mathop{\rm v}\nolimits} _j}\) is a linear combination of the preceding vectors \({{\mathop{\rm v}\nolimits} _1},...,{v_{j - 1}}\).

The set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent, and \({{\mathop{\rm v}\nolimits} _1} \ne 0\). Theorem 7 further establishes that \({{\mathop{\rm v}\nolimits} _2}\) cannot be a multiple of \({{\mathop{\rm v}\nolimits} _1}\), and \({{\mathop{\rm v}\nolimits} _3}\) cannot be a linear combination of \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\). According to this hypothesis, \({{\mathop{\rm v}\nolimits} _4}\) is not a linear combination of \({{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},\) and \({{\mathop{\rm v}\nolimits} _3}\). Thus, \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) is not a linearly dependent set according to theorem 7. So, it must be linearly independent.

02

Prove that the set is linearly independent by contradiction

Consider \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) as a linearly dependent set. Theorem 7 states that one of the vectors in the set is a linear combination of the preceding vectors. The vector cannot be \({{\mathop{\rm v}\nolimits} _4}\) since \({{\mathop{\rm v}\nolimits} _4}\) is not in the span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\). Furthermore, none of the vectors in \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is a linear combination of the preceding vectors. Therefore, the linear dependence of the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) is impossible.

Thus, the set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) is linearly independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation, and let Sand U be functions from \({\mathbb{R}^n}\) into \({\mathbb{R}^n}\) such that \(S\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) and \(\)\(U\left( {T\left( {\mathop{\rm x}\nolimits} \right)} \right) = {\mathop{\rm x}\nolimits} \) for all x in \({\mathbb{R}^n}\). Show that \(U\left( v \right) = S\left( v \right)\) for all v in \({\mathbb{R}^n}\). This will show that Thas a unique inverse, as asserted in theorem 9. (Hint: Given any v in \({\mathbb{R}^n}\), we can write \({\mathop{\rm v}\nolimits} = T\left( {\mathop{\rm x}\nolimits} \right)\) for some x. Why? Compute \(S\left( {\mathop{\rm v}\nolimits} \right)\) and \(U\left( {\mathop{\rm v}\nolimits} \right)\)).

Let \(T:{\mathbb{R}^n} \to {\mathbb{R}^n}\) be an invertible linear transformation. Explain why T is both one-to-one and onto \({\mathbb{R}^n}\). Use equations (1) and (2). Then give a second explanation using one or more theorems.

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \({\mathbb{R}^2}\) a linear combination of u and v?

8.Vectors w, x, y, and z

Consider a dynamical systemwith two components. The accompanying sketch shows the initial state vectorx0and two eigen vectorsυ1andυ2of A (with eigen values λ1andλ2respectively). For the given values ofλ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=0.9,λ2=0.9

The following equation describes a Givens rotation in \({\mathbb{R}^3}\). Find \(a\) and \(b\).

\(\left( {\begin{aligned}{*{20}{c}}a&0&{ - b}\\0&1&0\\b&0&a\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{4}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{\bf{2}}\sqrt {\bf{5}} }\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free