Chapter 1: Q18E (page 39)
Determine whether the statements that follow are true or false, and justify your answer.
18:
Short Answer
False, because the product of , which is not same as the given product.
Chapter 1: Q18E (page 39)
Determine whether the statements that follow are true or false, and justify your answer.
18:
False, because the product of , which is not same as the given product.
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why a set \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3},{{\mathop{\rm v}\nolimits} _4}} \right\}\) in \({\mathbb{R}^5}\) must be linearly independent when \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\) is linearly independent and \({{\mathop{\rm v}\nolimits} _4}\) is not in Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{{\mathop{\rm v}\nolimits} _2},{{\mathop{\rm v}\nolimits} _3}} \right\}\).
Show that if ABis invertible, so is B.
Give a geometric description of Span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors in Exercise 16.
Construct a \(3 \times 3\) matrix\(A\), with nonzero entries, and a vector \(b\) in \({\mathbb{R}^3}\) such that \(b\) is not in the set spanned by the columns of\(A\).
In Exercises 33 and 34, Tis a linear transformation from \({\mathbb{R}^2}\) into \({\mathbb{R}^2}\). Show that T is invertible and find a formula for \({T^{ - 1}}\).
33. \(T\left( {{x_1},{x_2}} \right) = \left( { - 5{x_1} + 9{x_2},4{x_1} - 7{x_2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.