Give a geometric description of span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors \({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\) and \({{\mathop{\rm v}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\).

Short Answer

Expert verified

Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is the pair of points on the line passing through \({v_1}\) and 0.

Step by step solution

01

Write \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) in the linear combination 

Thescalar multiple of a vector\({\mathop{\rm u}\nolimits} \)by real number\(c\)is the vector\(c{\mathop{\rm u}\nolimits} \)obtained by multiplying each entry in\({\mathop{\rm u}\nolimits} \)by\(c\).

The linear combination of two vectors\({{\mathop{\rm v}\nolimits} _1}\)and\({{\mathop{\rm v}\nolimits} _2}\)is a multiple of\({{\mathop{\rm v}\nolimits} _1}\). Span\(\left\{ {{v_1},...,{v_p}} \right\}\)contains every scalar multiple of\({{\mathop{\rm v}\nolimits} _1}\).

Write the vectors\({{\mathop{\rm v}\nolimits} _1}\)and\({{\mathop{\rm v}\nolimits} _2}\)in a linear combination

\(a{v_1} + b{v_2}\)

02

Determine whether vector \({{\mathop{\rm v}\nolimits} _2}\) is a multiple of \({{\mathop{\rm v}\nolimits} _1}\)

Suppose\({\mathop{\rm v}\nolimits} \)is a nonzero vector in\({\mathbb{R}^3}\), then span\(\left\{ {\mathop{\rm v}\nolimits} \right\}\)is a set of all scalar multiples of\({\mathop{\rm v}\nolimits} \), which is the set of points on the line in\({\mathbb{R}^3}\)through\({\mathop{\rm v}\nolimits} \)and 0.

If\({\mathop{\rm u}\nolimits} \)and\(v\)are nonzero vectors in\({\mathbb{R}^3}\), then span\(\left\{ {u,v} \right\}\)is the plane in\({\mathbb{R}^3}\)that contains\({\mathop{\rm u}\nolimits} ,v\)and origin 0. In particular, span\(\left\{ {{\rm{u,v}}} \right\}\)contains the line in\({\mathbb{R}^3}\)through\({\mathop{\rm u}\nolimits} \)and 0 and the line through \({\mathop{\rm v}\nolimits} \)and 0.

Write vector \({{\mathop{\rm v}\nolimits} _2}\) as an expression of \({{\mathop{\rm v}\nolimits} _1}\) in the linear combination of vectors

\(\begin{array}{l}a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}{12}\\3\\{ - 9}\end{array}} \right]\\a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right] + b\left( {\frac{3}{2}} \right)\left[ {\begin{array}{*{20}{c}}8\\2\\{ - 6}\end{array}} \right]\\a{v_1} + b{v_2} = a{v_1} + \frac{{3b}}{2}{v_1}\\a{v_1} + b{v_2} = \left( {a + \frac{{3b}}{2}} \right){v_1}\end{array}\)

03

Determine the geometric description of a span

Draw the graph for the geometric description of a span \({\mathbb{R}^3}\)

Since \({{\mathop{\rm v}\nolimits} _2}\) is a multiple of \({{\mathop{\rm v}\nolimits} _1}\), span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is a line in \({\mathbb{R}^3}\) spanned by \({v_1}\) and \({{\mathop{\rm v}\nolimits} _2}\).

Therefore, span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is the pair of points on the line passing through \({v_1}\) and 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter


Consider two vectors v1 andv2in R3 that are not parallel.

Which vectors inlocalid="1668167992227" 3are linear combinations ofv1andv2? Describe the set of these vectors geometrically. Include a sketch in your answer.

In Exercises 23 and 24, key statements from this section are either quoted directly, restated slightly (but still true), or altered in some way that makes them false in some cases. Mark each statement True or False, and justify your answer.(If true, give the approximate location where a similar statement appears, or refer to a definition or theorem. If false, give the location of a statement that has been quoted or used incorrectly, or cite an example that shows the statement is not true in all cases.) Similar true/false questions will appear in many sections of the text.

24.

a. Elementary row operations on an augmented matrix never change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same solution set.

A Givens rotation is a linear transformation from \({\mathbb{R}^{\bf{n}}}\) to \({\mathbb{R}^{\bf{n}}}\) used in computer programs to create a zero entry in a vector (usually a column of matrix). The standard matrix of a given rotations in \({\mathbb{R}^{\bf{2}}}\) has the form

\(\left( {\begin{aligned}{*{20}{c}}a&{ - b}\\b&a\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

Find \(a\) and \(b\) such that \(\left( {\begin{aligned}{*{20}{c}}4\\3\end{aligned}} \right)\) is rotated into \(\left( {\begin{aligned}{*{20}{c}}5\\0\end{aligned}} \right)\).

Consider a dynamical system x(t+1)=Ax(t)with two components. The accompanying sketch shows the initial state vector x0and two eigenvectors υ1andυ2of A (with eigen values λ1andλ2 respectively). For the given values of λ1andλ2, draw a rough trajectory. Consider the future and the past of the system.

λ1=1.2,λ2=1.1

Describe the possible echelon forms of the matrix A. Use the notation of Example 1 in Section 1.2.

a. A is a \({\bf{2}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{2}}}\).

b. A is a \({\bf{3}} \times {\bf{3}}\) matrix whose columns span \({\mathbb{R}^{\bf{3}}}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free