Let \({e_1} = \left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\), \({e_2} = \left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]\), \({y_1} = \left[ {\begin{array}{*{20}{c}}2\\5\end{array}} \right]\) and \({y_2} = \left[ {\begin{array}{*{20}{c}}{ - 1}\\6\end{array}} \right]\) and let \(T:{\mathbb{R}^2} \to {\mathbb{R}^2}\) be a linear transformation that maps \({e_1}\) into \({y_1}\) and maps \({e_2}\) into \({y_2}\). Find the images of \(\left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\).

Short Answer

Expert verified

\(\left[ {\begin{array}{*{20}{c}}{13}\\7\end{array}} \right]\), \(\left[ {\begin{array}{*{20}{c}}{2{x_1} - {x_2}}\\{5{x_1} + 6{x_2}}\end{array}} \right]\)

Step by step solution

01

For \(\left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\), find \(x\) in terms of \({e_1}\) and \({e_2}\)

Solve the equation \(x = \left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\).

\(\begin{aligned}x &= \left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}5\\0\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}0\\{ - 3}\end{array}} \right]\\ &= 5\left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]\\ &= 5{e_1} - 3{e_2}\end{aligned}\)

02

Find the image of \(\left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\)

\(\begin{aligned}T\left( x \right) &= T\left( {5{e_1} - 3{e_2}} \right)\\ &= 5T\left( {{e_1}} \right) - 3T\left( {{e_2}} \right)\\ &= 5{y_1} - 3{y_2}\\ &= 5\left[ {\begin{array}{*{20}{c}}2\\5\end{array}} \right] - 3\left[ {\begin{array}{*{20}{c}}{ - 1}\\6\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{13}\\7\end{array}} \right]\end{aligned}\)

03

For \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\), find \(x\) in terms of \({e_1}\) and \({e_2}\)

\(x\)can be expressed as follows:

\(\begin{aligned}x &= \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\\ &= {x_1}\left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]\\ &= {x_1}{e_1} + {x_2}{e_2}\end{aligned}\)

04

Find the image of \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\)

\(\begin{aligned}{c}T\left( x \right) &= T\left( {{x_1}{e_1} + {x_2}{e_2}} \right)\\ &= {x_1}T\left( {{e_1}} \right) + {x_2}T\left( {{e_2}} \right)\\ &= {x_1}\left[ {\begin{array}{*{20}{c}}2\\5\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}{ - 1}\\6\end{array}} \right]\\ &= \left[ {\begin{array}{*{20}{c}}{2{x_1} - {x_2}}\\{5{x_1} + 6{x_2}}\end{array}} \right]\end{aligned}\)

So, the image of \(\left[ {\begin{array}{*{20}{c}}5\\{ - 3}\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{13}\\7\end{array}} \right]\) and the image of \(\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right]\) is \(\left[ {\begin{array}{*{20}{c}}{2{x_1} - {x_2}}\\{5{x_1} + 6{x_2}}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free