Give a geometric description of Span \(\left\{ {{v_1},{v_2}} \right\}\) for the vectors in Exercise 16.

Short Answer

Expert verified

Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is a plane in \({\mathbb{R}^3}\) through the origin since the vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) are not a multiple of each other.

Step by step solution

01

Take the vectors from exercise 16

\({{\mathop{\rm v}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right]\)and \({v_2} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

02

Write \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) in the linear combination

Thescalar multiple of a vector\({\mathop{\rm u}\nolimits} \)by real number\(c\)is the vector\(c{\mathop{\rm u}\nolimits} \)obtained by multiplying each entry in\({\mathop{\rm u}\nolimits} \)by\(c\).

The linear combination of two vectors\({{\mathop{\rm v}\nolimits} _1}\)and\({{\mathop{\rm v}\nolimits} _2}\)is a multiple of\({{\mathop{\rm v}\nolimits} _1}\). Span\(\left\{ {{v_1},...,{v_p}} \right\}\)contains every scalar multiple of\({{\mathop{\rm v}\nolimits} _1}\).

Write the vectors\({{\mathop{\rm v}\nolimits} _1}\)and\({{\mathop{\rm v}\nolimits} _2}\)in a linear combination

\(a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

03

Determine whether the vector \({{\mathop{\rm v}\nolimits} _2}\) is a multiple of \({{\mathop{\rm v}\nolimits} _1}\)

Suppose\({\mathop{\rm v}\nolimits} \)is a nonzero vector in\({\mathbb{R}^3}\), then, span\(\left\{ {\mathop{\rm v}\nolimits} \right\}\)is a set of all scalar multiples of\({\mathop{\rm v}\nolimits} \), which is the set of points on the line in\({\mathbb{R}^3}\)through\({\mathop{\rm v}\nolimits} \)and 0. If\({\mathop{\rm u}\nolimits} \)and\(v\)are nonzero vectors in\({\mathbb{R}^3}\), where\({\mathop{\rm v}\nolimits} \)is not a multiple of\({\mathop{\rm u}\nolimits} \), then span\(\left\{ {u,v} \right\}\)is the plane in\({\mathbb{R}^3}\)that contains\({\mathop{\rm u}\nolimits} ,v\)and origin 0. In particular, span\(\left\{ {{\rm{u,v}}} \right\}\)contains the line in\({\mathbb{R}^3}\)through\({\mathop{\rm u}\nolimits} \)and 0 and the line through \({\mathop{\rm v}\nolimits} \)and 0.

Vector \({{\mathop{\rm v}\nolimits} _2}\)is not a scalar multiple of \({{\mathop{\rm v}\nolimits} _1}\).

\(a{v_1} + b{v_2} = a\left[ {\begin{array}{*{20}{c}}3\\0\\2\end{array}} \right] + b\left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\3\end{array}} \right]\)

04

Determine the geometric description of a span

Draw the graph of the geometric description of a span \({\mathbb{R}^3}\)

Span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is a plane in \({\mathbb{R}^3}\) through the origin since the vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) are not a multiple of each other. In conventional 3-space, every vector in the set has 0 as its second entry, and therefore resides in the xz-plane.

Therefore, span \(\left\{ {{{\mathop{\rm v}\nolimits} _1},{v_2}} \right\}\) is a plane in \({\mathbb{R}^3}\) through the origin since the vectors \({{\mathop{\rm v}\nolimits} _1}\) and \({{\mathop{\rm v}\nolimits} _2}\) are not a multiple of each other.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the system below is consistent for all possible values of \(f\) and \(g\). What can you say about the coefficients \(c\) and \(d\)? Justify your answer.

27. \(\begin{array}{l}{x_1} + 3{x_2} = f\\c{x_1} + d{x_2} = g\end{array}\)

Find all the polynomials of degree2[a polynomial of the formf(t)=a+bt+ct2] whose graph goes through the points (1,3)and(2,6),such that f'(1)=1[wheref'(t)denotes the derivative].

The solutions \(\left( {x,y,z} \right)\) of a single linear equation \(ax + by + cz = d\)

form a plane in \({\mathbb{R}^3}\) when a, b, and c are not all zero. Construct sets of three linear equations whose graphs (a) intersect in a single line, (b) intersect in a single point, and (c) have no points in common. Typical graphs are illustrated in the figure.

Three planes intersecting in a line.

(a)

Three planes intersecting in a point.

(b)

Three planes with no intersection.

(c)

Three planes with no intersection.

(c’)

Write the reduced echelon form of a \(3 \times 3\) matrix A such that the first two columns of Aare pivot columns and

\(A = \left( {\begin{aligned}{*{20}{c}}3\\{ - 2}\\1\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}0\\0\\0\end{aligned}} \right)\).

The following equation describes a Givens rotation in \({\mathbb{R}^3}\). Find \(a\) and \(b\).

\(\left( {\begin{aligned}{*{20}{c}}a&0&{ - b}\\0&1&0\\b&0&a\end{aligned}} \right)\left( {\begin{aligned}{*{20}{c}}{\bf{2}}\\{\bf{3}}\\{\bf{4}}\end{aligned}} \right) = \left( {\begin{aligned}{*{20}{c}}{{\bf{2}}\sqrt {\bf{5}} }\\{\bf{3}}\\{\bf{0}}\end{aligned}} \right)\), \({a^2} + {b^2} = 1\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free