Prove the second part of theorem 6: Let be any solution of \(A{\mathop{\rm x}\nolimits} = b\) , and define \({{\mathop{\rm v}\nolimits} _h} = {\mathop{\rm w}\nolimits} - p\) . Show that \({{\mathop{\rm v}\nolimits} _h}\) is a solution of \(A{\mathop{\rm x}\nolimits} = 0\) . This shows that every solution of \(A{\mathop{\rm x}\nolimits} = b\) has a form \(w = {\mathop{\rm p}\nolimits} + {{\mathop{\rm v}\nolimits} _h}\) , with \(p\) a particular solution of \(A{\mathop{\rm x}\nolimits} = b\) and \({{\mathop{\rm v}\nolimits} _h}\) a solution of \(A{\mathop{\rm x}\nolimits} = 0\).

Short Answer

Expert verified

Every solution of \(Ax = {\mathop{\rm b}\nolimits} \) is of the form \(w = {\mathop{\rm p}\nolimits} + {v_h}\).

Step by step solution

01

Prove the theorem by dividing it into two subparts

Assume that\({\mathop{\rm p}\nolimits} \)satisfies\(Ax = b\). Consequently,\(A{\mathop{\rm p}\nolimits} = b\). According to theorem 6, the solution set of\(Ax = b\)equals the set\[S = \left\{ {{\mathop{\rm w}\nolimits} :w = p + {v_k}\,for\,\,any\,\,{v_k}\,{\mathop{\rm such}\nolimits} \,\,that\,\,A{v_k} = 0} \right\}\]. The following two things are to be proved:

  1. Every vector in\(S\)is equivalent to\(Ax = b\).
  2. Every vector that is equivalent to \(Ax = b\) is in \(S\).
02

Prove subpart (a) of the theorem

(a)

Theorem 5 states that if\({\mathop{\rm u}\nolimits} \)and\({\mathop{\rm v}\nolimits} \)are vectors in\({\mathbb{R}^n}\)and\(c\)is a scalar, then\(A\left( {{\mathop{\rm u}\nolimits} + v} \right) = Au + Av.\)

Let\({\mathop{\rm w}\nolimits} \)be defined as\({\mathop{\rm w}\nolimits} = {\mathop{\rm p}\nolimits} + {v_h},\;\)where\(A{{\mathop{\rm v}\nolimits} _h} = 0\). In addition,

\(\begin{array}{c}A{\mathop{\rm w}\nolimits} = A\left( {{\mathop{\rm p}\nolimits} + {{\mathop{\rm v}\nolimits} _h}} \right)\\ = A{\mathop{\rm p}\nolimits} + A{{\mathop{\rm v}\nolimits} _h}\\ = b + 0\\ = b\end{array}\)

Thus, every vector has a form \({\mathop{\rm p}\nolimits} + {{\mathop{\rm v}\nolimits} _h}\) that satisfies the equation \(Ax = b\).

03

Prove subpart (b) of the theorem

(b)

Here, consider\({\mathop{\rm w}\nolimits} \)to be any solution of\(A{\mathop{\rm x}\nolimits} = b\), and set\({v_h} = {\mathop{\rm w}\nolimits} - p\). So,

\(\begin{array}{c}A{v_h} = A\left( {{\mathop{\rm w}\nolimits} - p} \right)\\ = Aw + Ap\\ = b - b\\ = 0\end{array}\)

Thus,\({v_h}\)satisfies\(Ax = 0\). Therefore, all solutions of\(Ax = {\mathop{\rm b}\nolimits} \)have a form\(w = {\mathop{\rm p}\nolimits} + {v_h}\).

Hence, every solution of \(Ax = {\mathop{\rm b}\nolimits} \) is of the form \(w = {\mathop{\rm p}\nolimits} + {v_h}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free