Question 25: Note that \(\left[ {\begin{array}{*{20}{c}}4&{ - 3}&1\\5&{ - 2}&5\\{ - 6}&2&{ - 3}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\2\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 3}\\{10}\end{array}} \right]\). Use this fact (and no row operations) to find scalars \({c_1},{c_2},{c_3}\) such that \(\left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 3}\\{10}\end{array}} \right] = {c_1}\left[ {\begin{array}{*{20}{c}}4\\5\\{ - 6}\end{array}} \right] + {c_2}\left[ {\begin{array}{*{20}{c}}{ - 3}\\{ - 2}\\2\end{array}} \right] + {c_3}\left[ {\begin{array}{*{20}{c}}1\\5\\{ - 3}\end{array}} \right]\).

Short Answer

Expert verified

The values of \({c_1}\), \({c_2}\), and \({c_3}\)are given as \( - 3\), \( - 1\,\),and \(2\), respectively.

Step by step solution

01

Multiply the scalar into the matrix

When the scalar is multiplied by the matrix, it is multiplied by every element of the matrix.

\(\left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 3}\\{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4{c_1}}\\{5{c_1}}\\{ - 6{c_1}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{ - 3{c_2}}\\{ - 2{c_2}}\\{2{c_2}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}{{c_3}}\\{5{c_3}}\\{ - 3{c_3}}\end{array}} \right]\)

02

Sum of the matrix

The sum of the matrix is calculated by adding all the corresponding elements of the matrix.

\(\left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 3}\\{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4{c_1} - 3{c_2} + {c_3}}\\{5{c_1} - 2{c_2} + 5{c_3}}\\{ - 6{c_1} + 2{c_2} - 3{c_3}}\end{array}} \right]\)

03

Product of matrices

Write the linear combination of the matrix into the product of matrices.

\(\left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 3}\\{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&{ - 3}&1\\5&{ - 2}&5\\{ - 6}&2&{ - 3}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\{{c_3}}\end{array}} \right]\)

04

Values of scalar

Now, compare the above matrix with the given matrix\(\left[ {\begin{array}{*{20}{c}}4&{ - 3}&1\\5&{ - 2}&5\\{ - 6}&2&{ - 3}\end{array}} \right]\left( {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\\2\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ - 7}\\{ - 3}\\{10}\end{array}} \right]\).

On comparing, you get;

\(\begin{array}{l}{c_1} = - 3\\{c_2} = - 1\\{c_3} = 2\end{array}\)

Hence, the values of \({c_1}\), \({c_2}\), and \({c_3}\)are given as \( - 3\), \( - 1\,\),and \(2\), respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If Ais a 2×2matrix with eigenvalues 3 and 4 and if localid="1668109698541" u is a unit eigenvector of A, then the length of vector Alocalid="1668109419151" ucannot exceed 4.

Determine whether the statements that follow are true or false, and justify your answer.

18: [111315171921][-13-1]=[131921]

Determine the values(s) of \(h\) such that matrix is the augmented matrix of a consistent linear system.

18. \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&{ - 2}\\5&h&{ - 7}\end{array}} \right]\)

Let \({{\bf{a}}_1}\) \({{\bf{a}}_2}\), and b be the vectors in \({\mathbb{R}^{\bf{2}}}\) shown in the figure, and let \(A = \left( {\begin{aligned}{*{20}{c}}{{{\bf{a}}_1}}&{{{\bf{a}}_2}}\end{aligned}} \right)\). Does the equation \(A{\bf{x}} = {\bf{b}}\) have a solution? If so, is the solution unique? Explain.

Suppose Tand Ssatisfy the invertibility equations (1) and (2), where T is a linear transformation. Show directly that Sis a linear transformation. (Hint: Given u, v in \({\mathbb{R}^n}\), let \({\mathop{\rm x}\nolimits} = S\left( {\mathop{\rm u}\nolimits} \right),{\mathop{\rm y}\nolimits} = S\left( {\mathop{\rm v}\nolimits} \right)\). Then \(T\left( {\mathop{\rm x}\nolimits} \right) = {\mathop{\rm u}\nolimits} \), \(T\left( {\mathop{\rm y}\nolimits} \right) = {\mathop{\rm v}\nolimits} \). Why? Apply Sto both sides of the equation \(T\left( {\mathop{\rm x}\nolimits} \right) + T\left( {\mathop{\rm y}\nolimits} \right) = T\left( {{\mathop{\rm x}\nolimits} + y} \right)\). Also, consider \(T\left( {cx} \right) = cT\left( x \right)\).)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free